Critical numbers - Increasing and decreasing intervals - Relative Extrema

Given $f(x)$, the derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ give important information about $f(x)$. $f^{\prime}(x)$ will help find the critical numbers (C.N.).
To find them, make the answer of $f^{\prime}(x)$ equal to zero; finally solve for $x$ and these value(s) are called C.N. of $f(x)$. Use these C.N. for the first derivative test to find the intervals where $f(x)$ is increasing or decreasing and the relative extrema.

Example 1: Given $f(x)=3 x^{4}-16 x^{3}+18 x^{2}-9$, find:
(a) the critical numbers of $f(x)$
$f^{\prime}(x)=12 x^{3}-48 x^{2}+36 x=12 x(x-1)(x-3)$
$f^{\prime}(x)=0 \Longrightarrow 12 x(x-1)(x-3)=0$
the critical numbers are $x=0, x=1$ and $x=3$
(b) the intervals where $f(x)$ is increasing or decreasing.

Use the first derivative test by locating C.N. on the number line and test $f^{\prime}(x)$ for each interval.
If $f^{\prime}(x)>0, f(x)$ is increasing; $f^{\prime}(x)<0, f(x)$ is decreasing.
(c) the relative extrema of $f(x)$

To find the extrema, examine each C.N. in the first derivative test to decide:
If before the C.N. $f^{\prime}(x)>0$ and after the C.N. $f^{\prime}(x)<0$, then this C.N. is a relative maximum and find the corresponding $y$ value.
If before the C.N. $f^{\prime}(x)<0$ and after the C.N. $f^{\prime}(x)>0$, then this C.N. is a relative minimum and find the corresponding $y$ value.
From the first derivative test, we get at $x=0$, a relative minimum and the $y$ value is $f(0)=-9$
at $x=1$, a relative maximum and $f(1)=-4$ and
at $x=3$, a relative minimum with $f(3)-36$

First Derivative Test


Note:
$f(x)$ is a polynomial function without asymptotes.
$f(x)$ is increasing at $0<x<1$ or $x>3$ $f(x)$ is decreasing at $x<0$ or $1<x<3$

Relative extrema are: relative minimum at $(0,-9)$ and $(3,-36)$ relative maximum at $(1,-4)$


Example 2: Given $f(x)=\frac{x+2}{2 x^{2}}$, find:
(a) the critical numbers of $f(x)$
$f^{\prime}(x)=-\frac{x+4}{2 x^{3}}:$ numerator $=0 \Longrightarrow x+4=0 \Longrightarrow x=-4$; denominator $=0 \Longrightarrow 2 x^{3}=0 \Longrightarrow x=0$
the critical numbers are $x=-4$ and $x=0$
(b) the intervals where $f(x)$ is increasing or decreasing.

Use the first derivative test by locating C.N. on the number line and test $f^{\prime}(x)$ for each interval.
If $f^{\prime}(x)>0, f(x)$ is increasing; $f^{\prime}(x)<0, f(x)$ is decreasing.
(c) the relative extrema of $f(x)$

To find the extrema, examine each C.N. in the first derivative test to decide:
If before the C.N. $f^{\prime}(x)>0$ and after the C.N. $f^{\prime}(x)<0$, then this C.N. is a relative maximum and find the corresponding $y$ value.
If before the C.N. $f^{\prime}(x)<0$ and after the C.N. $f^{\prime}(x)>0$, then this C.N. is a relative minimum and find the corresponding $y$ value.
From the first derivative test, we get at $x=0$, no extrema since the $y$ value is undefined,
a vertical asymptote at $x=0$; at
$x=-4$, a relative minimum and $f(-4)=-\frac{1}{16}=-0.0625$

First Derivative Test

$f(x)$ is increasing at $-4<x<0$ $f(x)$ is decreasing at $x<-4$ or $x>0$

Note:
$f(x)$ is a rational function with asymptotes.

Relative extrema is: relative minimum at $\left(-4,-\frac{1}{16}\right)$

Concavity: Point(s) of inflection

Given $f(x)$, the derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ give important information about $f(x)$.
$f^{\prime \prime}(x)$ will help to find the possible point(s) of inflection (P.I.).
To find them, make the answer of $f^{\prime \prime}(x)$ equal to zero;
finally solve for $x$ and these value(s) are called possible $x$ values P.I. of $f(x)$.
Use these possible P.I. for the second derivative test to find the intervals of concavity and P.I.
Two types of concavity (curve shape):

$$
f^{\prime \prime}(x)<0
$$

$$
f^{\prime \prime}(x)>0
$$

Example 3: Given $f(x)=x^{3}-27 x$, find:
(a) the $x$ values for possible point(s) of inflection of $f(x)$
$f^{\prime}(x)=3 x^{2}-27 ; f^{\prime \prime}(x)=6 x$
$f^{\prime \prime}(x)=0 \Longrightarrow 6 x=0$ the $x$ value for possible P.I. is $x=0$
(b) the intervals where $f(x)$ is concave up or concave down.

Use the second derivative test by locating $x$ value(s)of possible P.I. on the number line and test $f^{\prime \prime}(x)$ for each interval. If $f^{\prime \prime}(x)>0, f(x)$ is concave up; $f^{\prime \prime}(x)<0, f(x)$ is concave down.

Second Derivative Test


Note: $f(x)$ is a polynomial function without asymptotes.
(c) any point of inflection for $f(x)$

To find the point(s) of inflection, examine each possible P.I. in the second derivative test to decide:
If before the possible P.I., $f^{\prime \prime}(x)>0$ and after the possible P.I., $f^{\prime \prime}(x)<0$, then this P.I. is a point of inflection and find the corresponding $y$ value.
If before the possible P.I., $f^{\prime \prime}(x)<0$ and after the possible P.I., $f^{\prime \prime}(x)>0$, then this P.I. is a point of inflection and find the corresponding $y$ value.
From the second derivative test, we get at
$x=0$, a point of inflection and the $y$ value is $f(0)=0$
Point of inflection at $(0,0)$
$f(x)$ is concave up at $x>0$
$f(x)$ is concave down at $x<0$
Point of inflection is: $(0,0)$


Example 4: Given $f(x)=\frac{3 x^{2}}{(x+2)^{2}}$, find:
(a) the $x$ values for possible point(s) of inflection of $f(x)$
$f^{\prime}(x)=\frac{12 x}{(x+2)^{3}} ; f^{\prime \prime}(x)=\frac{-24(x-1)}{(x+2)^{4}}$
from $f^{\prime \prime}(x)$ : numerator $=0 \Longrightarrow-24(x-1)=0 \Longrightarrow x=1$; denominator $=0 \Longrightarrow(x+2)^{4}=0 \Longrightarrow x=-2$ the $x$ values for possible P.I. are $x=-2$ and $x=1$
(b) the intervals where $f(x)$ is concave up or concave down.

Use the second derivative test by locating $x$ value(s)of possible P.I. on the number line and test $f^{\prime \prime}(x)$ for each interval. If $f^{\prime \prime}(x)>0, f(x)$ is concave up; $f^{\prime \prime}(x)<0, f(x)$ is concave down.
(c) any point of inflection for $f(x)$

To find the point(s) of inflection, examine each possible P.I. in the second derivative test to decide:
If before the possible P.I., $f^{\prime \prime}(x)>0$ and after the possible P.I., $f^{\prime \prime}(x)<0$, then this P.I. is a point of inflection and find the corresponding $y$ value.
If before the possible P.I., $f^{\prime \prime}(x)<0$ and after the possible P.I., $f^{\prime \prime}(x)>0$, then this P.I. is a point of inflection and find the corresponding $y$ value.
From the second derivative test, we get at
$x=-2$, no point of inflection since the $y$ value is undefined,
a vertical asymptote at $x=-2$; at
$x=1$, a point of inflection and the $y$ value is $f(1)=\frac{1}{3}$
Point of inflection at $\left(1, \frac{1}{3}\right)$

Second Derivative Test


Note:
$\overline{f(x)}$ is a rational function with asymptotes.
$f(x)$ is concave up at
$x<-2$ or $-2<x<1$
$f(x)$ is concave down at $x>1$

Point of inflection is: $\left(1, \frac{1}{3}\right)$


Relative Extrema and the second derivative test

Given $f(x)$, we saw that the first derivative test finds the relative extrema and the second derivatives $f^{\prime \prime}(x)$ will do the same.
We need $f^{\prime}(x)$ to find the critical numbers (C.N. ). Replace these C.N. in the answer of $f^{\prime \prime}(x)$.
If $f^{\prime \prime}(\mathrm{C} . \mathrm{N})>$.0 , then C.N. is a relative minimum and find the corresponding $y$ value.
If $f^{\prime \prime}(\mathrm{C} . \mathrm{N})<$.0 , then C.N. is a relative maximum and find the corresponding $y$ value.
If $f^{\prime \prime}(\mathrm{C} . \mathrm{N})=$.0 or undefined, then C.N. is not a relative extremum.

Example 5: Given $f(x)=3 x^{4}-16 x^{3}+18 x^{2}-9$, find: the relative extrema using the second derivative test.
$f^{\prime}(x)=12 x^{3}-48 x^{2}+36 x=12 x(x-1)(x-3)$
$f^{\prime}(x)=0 \Longrightarrow 12 x(x-1)(x-3)=0$
the critical numbers are $x=0, x=1$ and $x=3$
$f^{\prime \prime}(x)=36 x^{2}-96 x+36$
replace $x=0 \Longrightarrow f^{\prime \prime}(0)=36>0$, relative minimum at $(0,-9)$
replace $x=1 \Longrightarrow f^{\prime \prime}(1)=-24<0$, relative maximum at $(1,-4)$
replace $x=3 \Longrightarrow f^{\prime \prime}(3)=72>0$, relative minimum at $(0,-36)$
Note: These results are the same as in Example 1 and the graph of Example 1.

Example 6: Given $f(x)=\frac{x+2}{2 x^{2}}$, find:
the relative extrema using the second derivative test.
$f^{\prime}(x)=-\frac{x+4}{2 x^{3}}:$ numerator $=0 \Longrightarrow x+4=0 \Longrightarrow x=-4$; denominator $=0 \Longrightarrow 2 x^{3}=0 \Longrightarrow x=0$
the critical numbers are $x=-4$ and $x=0$
$f^{\prime \prime}(x)=\frac{x+6}{x^{4}}$
replace $x=-4 \Longrightarrow f^{\prime \prime}(-4)=\frac{1}{128}>0$, relative minimum at $\left(-4,-\frac{1}{16}\right)$
replace $x=0 \Longrightarrow f^{\prime \prime}(0)=$ undefined, no extrema since the $y$ value is undefined, a vertical asymptote at $x=0$

Note: These results are the same as in Example 2 and the graph of Example 2.

## Absolute Extrema

Given $f(x)$ over a closed interval $[a, b]$, find the highest $y$ value in that interval called the absolute maximum and the lowest $y$ value in that interval called the absolute minimum.
First we locate any C.N. in that interval using the first derivative $f^{\prime}(x)$, then we build a table of values including the boundaries of the interval and any C.N. in that interval. The table has the $x$ values and the corresponding $y$ values. The highest $y$ will be the absolute maximum and the lowest $y$ will be the absolute minimum.

Example 7: Given $f(x)=x^{3}-27 x$ over $[0,5]$
$f^{\prime}(x)=3 x^{2}-27=3(x-3)(x+3)$
the critical numbers are $x=-3 ; x=3$; only $x=3$ is between $x=0$ and $x=5$

| $x$ | $y=f(x)$ |
| :--- | :--- |
| 0 | $f(0)=0 \Longrightarrow$ absolute maximum |
| 3 | $f(3)=-54 \Longrightarrow$ absolute minimum |
| 5 | $f(5)=-10$ |

Example 8: Given $f(x)=\frac{x-2}{(x+1)^{2}}$ on $[-2,6]$
$f^{\prime}(x)=\frac{5-x}{(x+1)^{3}}$
numerator $=0 \Longrightarrow 5-x=0 \Longrightarrow x=5$; denominator $=0 \Longrightarrow(x+1)^{3}=0 \Longrightarrow x=-1$
the critical numbers are $x=-1 ; x=0$; both values are between $x=-2$ and $x=6$

| $x$ | $y=f(x)$ |
| :---: | :--- |
| -2 | $f(-2)=-4$ |
| -1 | $f(-1)=-\infty$ |
| 5 | $f(5)=\frac{1}{12} \approx 0.0833$ |
| 6 | $f(6)=\frac{4}{49} \approx 0.0816$ |

absolute maximum is $\frac{1}{12} \approx 0.0833$ at $x=5$; no absolute minimum.

## Curve Sketching

To sketch the curve of $f(x)$ using the derivative method implies following these steps:
(1) $f(x)$ gives $x-y$ intercepts, any asymptotes if $f(x)$ is a rational function.
(2) $f^{\prime}(x)$ gives relative extrema, intervals of increasing \& decreasing with the first derivative test.
(3) $f^{\prime \prime}(x)$ gives point(s) of inflection, intervals of concavity with the second derivative test.
(4) a table including all results from steps (1) to (3).
(5) Sketch the curve of $f(x)$ showing all points found in steps (1) to (3).

Example 9: Given $f(x)=\frac{x^{2}}{x+2}$; list (if any) all $x$ and $y$ intercepts, vertical and horizontal asymptotes, relative extrema, points of inflection, intervals where $f(x)$ is increasing, decreasing, concave up, concave down and then sketch the graph of $f(x)$.
from $f(x) \Longrightarrow x-y$ intercept: $(0,0)$
asymptotes: vertical asymptote: denominator $=0 \Longrightarrow x+2=0 \Longrightarrow x=-2$
horizontal asymptote: $\lim _{x \rightarrow \infty} \frac{x^{2}}{x+2}=$ D.N.E. ; no horizontal asymptote
from $f^{\prime}(x)=\frac{x(x+4)}{(x+2)^{2}}$ : the critical point at: $x=0, y=0$
from $f^{\prime \prime}(x)=\frac{8}{(x+2)^{3}}$ : no point of inflection


Example 10: Given $f(x)=18 x^{2}-2 x^{3}$; list (if any) all $x$ and $y$ intercepts, vertical and horizontal asymptotes, relative extrema, points of inflection, intervals where $f(x)$ is increasing, decreasing, concave up, concave down and then sketch the graph of $f(x)$.
from $f(x)=2 x^{2}(9-x) \Longrightarrow x-y$ intercept: $(0,0) ;(9,0)$
no asymptotes since $f(x)$ is a polynomial.
from $f^{\prime}(x)=36 x-6 x^{2}=6 x(6-x):$ the critical points at: $(0,0) ;(6,216)$
from $f^{\prime \prime}(x)=36-12 x$ : possible point of inflection at $(3,108)$


Example 11: Sketch $f(x)$ with the following conditions:
points at $(-1,1),(0,0),(1,-1)$; horizontal asymptote: $\lim _{x \rightarrow \infty} f(x)=0$
$x<-1 \Longrightarrow f^{\prime}(x)<0, f^{\prime \prime}(x)>0$
$-1<x<0 \Longrightarrow f^{\prime}(x)<0, f^{\prime \prime}(x)>0$
$0<x<1 \Longrightarrow f^{\prime}(x)<0, f^{\prime \prime}(x)<0$
$x>1 \Longrightarrow f^{\prime}(x)>0, f^{\prime \prime}(x)<0$

| intervals <br> $x$ values | signs of <br> $f^{\prime}(x)$ | signs of <br> $f^{\prime \prime}(x)$ | shape of $f(x)$ <br> and $y$ values |
| :---: | :---: | :---: | :---: |
| $-\infty$ |  |  |  |
| $]-\infty,-1[$ | - | + | decreasing, concave up |
| -1 |  |  | $(-1,1)$ |
| $]-1,0[$ | - | - | decreasing, concave down |
| 0 |  |  | point of inflection at $(0,0)$ |
| $] 0,1[$ | - | - | decreasing, concave down |
| 1 |  |  | relative minimum at $(1,-1)$ |
| $] 1,+\infty[$ | + | - | increasing, concave down |
| $+\infty$ |  |  | horizontal asymptote at $y=0$ |



