Derivative formulas of Exponential Function
The derivative formula of the exponential function is $y=f(x)=a^{x} \Longrightarrow y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=a^{x} \ln (a)$
Composite exponential function where u is a function of x : Chain Rule for exponential function
$y=f(x)=a^{u} \Longrightarrow y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=a^{u} \ln (a) \cdot u^{\prime}$
base 10: $y=10^{x} \Longrightarrow y^{\prime}=10^{x} \ln (10)$
base $e: y=e^{x} \Longrightarrow y^{\prime}=e^{x}$
Example: If $y=e^{-x^{3}} \Longrightarrow y^{\prime}=e^{-x^{3}}\left(-x^{3}\right)^{\prime}=-3 x^{2} e^{-x^{3}}$

Example 1 of Exponential Function:
Given $f(x)=e^{-2 x}$, find the equation of the tangent line at $x=0$.

The derivative
$f^{\prime}(x)=e^{-2 x}(-2 x)^{\prime}=-2 e^{-2 x}$
point at $x=0, y=0$
slope: $m=f(0)=-2$
equation of tangent line:
$y-1=-2(x-0) \Longrightarrow y=-2 x+1$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=0$ (red line)

Note: The graph is not part of the solution. It is just visual!

Example 2 of Exponential Function:
Given $f(x)=(2 x-1) e^{x}$, find the equation of the tangent line at $x=0$.

The Product Rule: $(u . v)^{\prime}=u^{\prime} v+v^{\prime} u$
$u=2 x-1 \rightarrow u^{\prime}=2 ; v=e^{x} \rightarrow v^{\prime}=e^{x}$
$f^{\prime}(x)=2 e^{x}+e^{x}(2 x-1)=(2 x+1) e^{x}$
point at $x=0, y=-1$
slope: $m=f(0)=1$
equation of tangent line:
$y-(-1)=1(x-0) \Longrightarrow y=x-1$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=0$ (red line)

Note: The graph is not part of the solution.
It is just visual!

Example 3 of Exponential Function:
Given $f(x)=\frac{x-2}{e^{x}}$, find the equation of the tangent line at $x=0$.

The Quotient Rule: $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-v^{\prime} u}{v^{2}}$
$u=x-2 \rightarrow u^{\prime}=1 ; v=e^{x} \rightarrow v^{\prime}=e^{x}$
$f^{\prime}(x)=\frac{(1) e^{x}-e^{x}(x-2)}{\left(e^{x}\right)^{2}}=\frac{(3-x) e^{x}}{\left(e^{x}\right)^{2}}=\frac{3-x}{e^{x}}$
point at $x=0, y=-2$
slope: $m=f(0)=3$
equation of tangent line:
$y-(-2)=3(x-0) \Longrightarrow y=3 x-2$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=0$ (red line)

Note: The graph is not part of the solution.
It is just visual !

Example 4 of Exponential Function:
Given $f(x)=e^{1-x^{2}}$, find the equation of the tangent line at $x=1$.

The Chain Rule: $(u(v))^{\prime}=u^{\prime}(v) \cdot v^{\prime}$
$u(v)=e^{v} \rightarrow u^{\prime}(v)=e^{v} \cdot v^{\prime}$
$v=1-x^{2} \rightarrow v^{\prime}=-2 x$
$f^{\prime}(x)=e^{1-x^{2}} \cdot(-2 x)=-2 x e^{1-x^{2}}$
point at $x=1, y=1$
slope: $m=f(1)=-2$
equation of tangent line:
$y-1=-2(x-1) \Longrightarrow y=-2 x+3$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=1$ (red line)

Note: The graph is not part of the solution.
It is just visual !

Derivative formulas of Logarithmic Function
The derivative formula of the logarithmic function is $y=f(x)=\log _{a}(x) \Longrightarrow y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{1}{x \ln (a)}$
Composite logarithmic function where u is a function of x : Chain Rule for logarithmic function
$y=f(x)=\log _{a}(u) \Longrightarrow y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{1}{u \ln (a)} \cdot u^{\prime}$
base 10: $y=\log (x) \Longrightarrow y^{\prime}=\frac{1}{x \ln (10)}$
base $e: y=\log _{e}(x)=\ln (x) \Longrightarrow y^{\prime}=\frac{1}{x}$
Example: If $y=\ln \left(4-x^{2}\right) \Longrightarrow y^{\prime}=\frac{1}{4-x^{2}}\left(4-x^{2}\right)^{\prime}=\frac{-2 x}{4-x^{2}}$

Example 5 of Logarithmic Function:
Given $f(x)=\ln (1-x)$, find the equation of the tangent line at $x=0$.

The derivative
$f^{\prime}(x)=\frac{1}{1-x}(1-x)^{\prime}=\frac{-1}{1-x}=\frac{1}{x-1}$
point at $x=0, y=0$
slope: $m=f(0)=-1$
equation of tangent line:
$y-0=-1(x-0) \Longrightarrow y=-x$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=0$ (red line)

Note: The graph is not part of the solution.
It is just visual!

Example 6 of Logarithmic Function:
Given $f(x)=(x+1) \ln (x)$, find the equation of the tangent line at $x=1$.

The Product Rule: $(u . v)^{\prime}=u^{\prime} v+v^{\prime} u$
$u=x+1 \rightarrow u^{\prime}=1 ; v=\ln (x) \rightarrow v^{\prime}=\frac{1}{x}$
$f^{\prime}(x)=(1) \ln (x)+\frac{1}{x}(x+1)=\ln (x)+\frac{x+1}{x}$
point at $x=1, y=0$
slope: $m=f(1)=2$
equation of tangent line:
$y-0=2(x-1) \Longrightarrow y=2 x-2$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=1$ (red line)

Note: The graph is not part of the solution. It is just visual !

Example 7 of Logarithmic Function:
Given $f(x)=\frac{\ln (x)}{x}$, find the equation of the tangent line at $x=1$.

The Quotient Rule: $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-v^{\prime} u}{v^{2}}$
$u=\ln (x) \rightarrow u^{\prime}=\frac{1}{x} ; v=x \rightarrow v^{\prime}=1$
$f^{\prime}(x)=\frac{\frac{1}{x} x-(1) \ln (x)}{x^{2}}=\frac{1-\ln (x)}{x^{2}}$
point at $x=1, y=0$
slope: $m=f(1)=1$
equation of tangent line:
$y-0=1(x-1) \Longrightarrow y=x-1$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=1$ (red line)

Note: The graph is not part of the solution. It is just visual !

Example 8 of Logarithmic Function:
Given $f(x)=\ln \left(x^{2}+1\right)$, find the equation of the tangent line at $x=1$.

The Chain Rule: $(u(v))^{\prime}=u^{\prime}(v) \cdot v^{\prime}$
$u(v)=\ln (v) \rightarrow u^{\prime}(v)=\frac{1}{v} \cdot v^{\prime}$
$v=x^{2}+1 \rightarrow v^{\prime}=2 x$
$f^{\prime}(x)=\frac{1}{x^{2}+1} \cdot(2 x)=\frac{2 x}{x^{2}+1}$
point at $x=1, y=\ln (2)$
slope: $m=f(1)=1$
equation of tangent line:
$y-\ln (2)=1(x-0) \Longrightarrow y=x-1+\ln (2)$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=1$ (red line)

Note: The graph is not part of the solution. It is just visual!

\qquad
Example 9 of Exponential \& Logarithmic Functions:
Given $f(x)=e^{2 \ln (x-1)}$, find the equation of the tangent line at $x=2$.

Rewrite: $f(x)=e^{2 \ln (x-1)}=(x-1)^{2}$
The Chain Rule: $(u(v))^{\prime}=u^{\prime}(v) \cdot v^{\prime}$
$u(v)=(v)^{2} \rightarrow u^{\prime}(v)=2 v \cdot v^{\prime}$
$v=x-1 \rightarrow v^{\prime}=1$
$f^{\prime}(x)=2(x-1) \cdot(1)=2(x-1)$
point at $x=2, y=1$
slope: $m=f(2)=2$
equation of tangent line:
$y-1=2(x-2) \Longrightarrow y=2 x-3$
The graph shows the curve of $f(x)$ (blue curve) and the tangent line at $x=2$ (red line)

Note: The graph is not part of the solution.

It is just visual!

Example 10: Logarithmic Function
Find the derivative: $f(x)=\ln \left(\frac{1-2 x}{x+3}\right)$
rewrite using log properties:
$f(x)=\ln (1-2 x)-\ln (x+3)$
$f^{\prime}(x)=\frac{1}{1-2 x}(-2)-\frac{1}{x+3}(1)=\frac{-2}{1-2 x}-\frac{1}{x+3}$
$f^{\prime}(x)=\frac{-2(x+3)-(1-2 x)}{(1-2 x)(x+3)}=\frac{-7}{(1-2 x)(x+3)}$

Example 11: Logarithmic Function
Find the derivative: $f(x)=\ln \left(\frac{\sqrt{x}}{x^{3}+1}\right)$
rewrite using log properties:
$f(x)=\ln (\sqrt{x})-\ln \left(x^{3}+1\right)=\frac{1}{2} \ln (x)-\ln \left(x^{3}+1\right)$
$f^{\prime}(x)=\frac{1}{2} \frac{1}{x}-\frac{1}{x^{3}+1}\left(3 x^{2}\right)=\frac{1}{2 x}-\frac{3 x^{2}}{x^{3}+1}$
$f^{\prime}(x)=\frac{\left(x^{3}+1\right)-3 x^{2}(2 x)}{2 x\left(x^{3}+1\right)}=\frac{-5 x^{3}+1}{2 x\left(x^{3}+1\right)}$

Example 12: Logarithmic Function
Find the derivative: $f(x)=\ln ^{2}(4 x+1)$
rewrite:
$f(x)=(\ln (4 x+1))^{2}$
$f^{\prime}(x)=2 \ln (4 x+1) \frac{1}{4 x+1}(4)=\frac{8}{4 x+1} \ln (4 x+1)$

