Topics of Functions used in Calculus

Definition of a function $f(x)$:
A function $y=f(x)$ is a relation between 2 variables x and y such that for every x value only one y value.

A point is represented by the coordinates (x, y).
If we have a set of points like $(-1,2) ;(1,3) ;(3,2) ;(4,-1)$;
these points represent by definition a function where the domain of the function is the set of x values $\{-1,1,3,4\}$ and the range of the function is the set of the corresponding y values $\{-1,2,3\}$.

Most of the time, a function is presented by an equation.
The graph of a function $y=f(x)$ may have intercepts with the axes.
When $x=0$, we get the y intercept and when $y=0$, we get the x intercept.

Linear function

A linear function has the general function $y=a x+b$
The graph shows 3 linear functions called lines:
(1) $y=3$ represents a horizontal line (red)
(2) $y=x+1$ (blue line)
(3) $y=-2 x-4$ (brown line)

Domain of the 3 lines is \Re (all real numbers)
Range of (1) is $\{3\}$.
Range of (2) is \Re.
Range of (3) is \Re.
Even if the window of the graph restricts the view of the domain and range, the lines still go on.

Line (1) shows a horizontal line $y=0 x+3=3$ with slope $m=0$ and y intercept $(0,3)$, no x intercept.

Line (2) shows $y=x+1$ with slope $m=1$, x-intercept $(-1,0)$ and y-intercept $(0,1)$

Line (3) shows $y=-2 x-4$ with slope $m=-2$, x-intercept $(-2,0)$ and y-intercept $(0,-4)$

Equation of a Line:
The general form of an equation of a line is $y=m x+b$
To find the equation, need one of 2 next situations:
(1) coordinates of point $\left(x_{1}, y_{1}\right)$ on the line and slope m
(2) coordinates of 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Example 1:
Given point $(2,3)$ and slope 4 , find the equation of the line.
The form used is: $y-y_{1}=m\left(x-x_{1}\right)$
replace and we get: $y-3=4(x-2) \Longrightarrow y=4 x-5$
The slope is $m=4$ and $b=-5$ (y-intercept $)$

Example 2:
Given 2 points $(3,1)(-1,2)$, find the equation of the line.
To find the slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{1-2}{3-(-1)}=-\frac{1}{4}$
The form used is: $y-y_{1}=m\left(x-x_{1}\right)$
replace and we get: $y-2=-\frac{1}{4}(x+1) \Longrightarrow y=-\frac{1}{4} x+\frac{7}{4} \Longrightarrow 4 y+x=7$
The slope is $m=-\frac{1}{4}$ and $b=\frac{7}{4}$ (y-intercept)

Quadratic function

A quadratic function has the general function $y=a x^{2}+b x+c$
The graph shows 3 quadratic functions
called parabolas:
(1) $y=x^{2}$ (red parabola)
(2) $y=x^{2}-4 x+2$ (blue parabola)
(3) $y=-x^{2}-2 x-3$ (brown parabola)

Domain of the 3 parabolas is \Re (all real numbers)
Range of (1) is $y \geq 0$.
Range of (2) is $y \geq-2$.
Range of (3) is $y \leq-2$.
Even if the window of the graph restricts the view of the domain and range, the parabolas still go on.

Parabola (1) shows $y=x^{2}$ with
vertex at $(0,0)$ opening upwards
x-intercept $(0,0)$ and y-intercept $(0,0)$.
Parabola (2) shows $y=x^{2}-4 x+2$ with vertex at $(2,-2)$ opening upwards
x-intercepts $(0.6,0)$ and $(3.4,0) ; y$-intercept $(0,2)$.
Parabola (3) shows $y=-x^{2}-2 x-3$ with

(2) $y=x^{2}-2 x+2$
vertex at $(-1,-2)$ opening downwards
no x-intercept and y-intercept $(0,-3)$

Example:

Given the curve of $y=12 x-3 x^{2}$, find the vertex and the intercepts.
Use the quadratic function $y=a x^{2}+b x+c$ with a vertex at $x=-\frac{b}{2 a}$ and find the corresponding y value;
x-intercept: make $y=0$ and find the x value(s)
y-intercept: make $x=0$ and find the y value
In this example, vertex is located at $x=-\frac{12}{2(-3)}=2, y=12(2)-3(2)^{2}=12$
so the vertex is at $(2,12)$, opening downwards since $a=-3<0$,
x-intercepts at $(0,0)$ and $(4,0) ; y$-intercept at $(0,0)$

Absolute Value function

A absolute value function has the general function $y=a|x-h|+k$
The graph shows 3 absolute value functions called V-graphs:
(1) $y=|x|$ (red $V-$ graph)
(2) $y=|x-1|-2$ (blue V-graph)
(3) $y=-|x+2|$ (brown V-graph)

Domain of the $3 V$-graphs is \Re (all real numbers)
Range of (1) is $y \geq 0$.
Range of (2) is $y \geq-2$.
Range of (3) is $y \leq 0$.
Even if the window of the graph restricts the view of the domain and range, the V-graphs still go on.
V-graph (1) shows $y=|x|$ with
vertex at $(0,0)$ opening upwards
x-intercept $(0,0)$ and y-intercept $(0,0)$.
V-graph (2) shows $y=|x-1|-2$ with
 vertex at $(1,-2)$ opening upwards x-intercepts $(-1,0)$ and $(3,0) ; y$-intercept $(0,-1)$.
V-graph (3) shows $y=-|x+2|$ with
vertex at $(-2,0)$ opening downwards
x-intercept $(-2,0)$ and y-intercept $(0,-2)$

Square Root function
A square root function has the general function $y=a \sqrt{x-h}+k$
The graph shows 3 square root functions called irrational functions:
(1) $y=\sqrt{x}$ (red curve)
(2) $y=\sqrt{-x}+2$ (blue curve)
(3) $y=-\sqrt{x+1}$ (brown curve)

Domain of (1) is $x \geq 0$; Range is $y \geq 0$.
Domain of (2) is $x \leq-2$; Range is $y \geq 2$.
Domain of (3) is $x \geq-1$; Range is $y \leq 0$.
Even if the window of the graph restricts the view of the domain and range, the irrational curves still go on.
curve (1) shows $y=\sqrt{x}$ has
x-intercept $(0,0)$ and y-intercept $(0,0)$.
curve (2) shows $y=\sqrt{-x}+2$ has
no x-intercept and y-intercept $(0,2)$.
curve (3) shows $y=-\sqrt{x+1}$ has

x-intercept $(-1,0)$ and y-intercept $(0,-1)$

Rational function

A rational function has the general function $y=\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomials
(1) The graph shows a rational function called fractional expression:
$y=\frac{1}{x}=x^{-1}$
Domain: $\Re-\{0\} \longrightarrow x \neq 0$
Range: $\Re-\{0\} \longrightarrow y \neq 0$
vertical asymptote: denominator $=0 \Longrightarrow x=0$
horizontal asymptote: when $x \rightarrow \pm \infty \Longrightarrow y=0$
no x and y intercepts.

Even if the window of the graph restricts the view of the domain and range, the rational curve still go on.

(2) The graph shows a rational function called fractional expression:
$y=\frac{2 x-1}{x-1}$
Domain: $\Re-\{1\} \longrightarrow x \neq 1$
Range: $\Re-\{2\} \longrightarrow y \neq 2$
vertical asymptote: denominator $=0 \Longrightarrow x=1$
horizontal asymptote: when $x \rightarrow \pm \infty \Longrightarrow y=2$
x-intercept: $\left(\frac{1}{2}, 0\right)$ and y-intercept: $(0,1)$
Even if the window of the graph restricts the view of the domain and range, the rational curve still go on.

(3) The graph shows a rational function called fractional expression:
$y=\frac{-2}{x+1}$
Domain: $\Re-\{-1\} \longrightarrow x \neq-1$
Range: $\Re-\{0\} \longrightarrow y \neq 0$
vertical asymptote: denominator $=0 \Longrightarrow x=-1$
horizontal asymptote: when $x \rightarrow \pm \infty \Longrightarrow y=0$
no x-intercept: and y-intercept: $(0,-2)$
Even if the window of the graph restricts the view of the domain and range, the rational curve still go on.

Piecewise function

(1) The graph shows a piecewise function
$f(x)=\left\{\begin{array}{lll}x^{2}-1 & \text { if } & x \leq 1 \\ x & \text { if } & x>1\end{array}\right.$
Domain: \Re; Range: $y \geq 1$
The graph on the left of $x=1$ is a piece of a parabola

The graph on the right of $x=1$ is a piece of a line
Even if the window of the graph restricts the view of the domain and range, the piecewise curve still go on.
(2) The graph shows a piecewise function
$g(x)=\left\{\begin{array}{ccc}-x^{2}+4 & \text { if } & x \leq 1 \\ x-1 & \text { if } & x>1\end{array}\right.$
Domain: \Re; Range: \Re
x-intercept $(-2,0) ; y$-intercept $(0,4)$
The graph on the left of $x=1$ is a piece of a parabola

The graph on the right of $x=1$ is a piece of a line
Even if the window of the graph restricts the view of the domain and range, the piecewise curve still go on.

(3) The graph shows a piecewise function
$h(x)=\left\{\begin{array}{lll}-x-1 & \text { if } & x \leq-1 \\ -x^{2}+1 & \text { if } & -1<x \leq 2 \\ x & \text { if } & x>2\end{array}\right.$
Domain: \Re; Range: $y \geq-3$
x-intercepts $(-1,0)$ and $(1,0) ; y$-intercept $(0,1)$
The graph on the left of $x=-1$ is a piece of a line
The graph between $x=-1$ and $x=2$ is a piece of a parabola

The graph on the right of $x=2$ is a piece of a line
Even if the window of the graph restricts the view of the domain and range, the piecewise curve still go on.

$\underline{\text { Operations on functions }}$
There are 6 operations on functions that can be done:
(1) addition ; (2) subtraction ; (3) multiplication ; (4) division ; (5) composition ; (6) inverse
(make sure that every answer is reduced)
(1) add $f(x)=x^{2}+1$ to $g(x)=2 x-3$
$(f+g)(x)=f(x)+g(x)=\left(x^{2}+1\right)+(2 x-3)=x^{2}+2 x-2$
(2) subtract $f(x)=4 x-5$ from $g(x)=x^{2}-x+1$
$(f-g)(x)=f(x)-g(x)=\left(x^{2}-x+1\right)-(4 x-5)=x^{2}-5 x+6$
(3) multiply $f(x)=3 x-1$ with $g(x)=-x^{2}+x$
$(f \cdot g)(x)=f(x) \cdot g(x)=(3 x-1) \cdot\left(-x^{2}+x\right)=-3 x^{3}+x^{2}+3 x^{2}-x=-3 x^{3}+4 x^{2}-x=-3 x^{3}+4 x^{2}-x$
(4) divide $f(x)=3 x$ by $g(x)=x+1$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{3 x}{x+1}$
(5) composition $f(g(x))=(f \circ g)(x)$ or $g(f(x))=(g \circ f)(x)$

Given $f(x)=2 x^{2}-4 x$ and $g(x)=x+5$, find $(f \circ g)(x)$.
replace every x in $f(x)$ with $g(x)$ as follows:
$(f \circ g)(x)=f(g(x))=2(x+5)^{2}-4(x+5)=2\left(x^{2}+10 x+25\right)-4 x-20=2 x^{2}+16 x+30$

Operations on functions

(5) composition $f(g(x))=(f \circ g)(x)$ or $g(f(x))=(g \circ f)(x)$

Given $f(x)=x^{2}-2 x$ and $g(x)=3 x+5$, find $(g \circ f)(x)$.
replace every x in $g(x)$ with $f(x)$ as follows:
$(g \circ f)(x)=g(f(x))=3\left(x^{2}-2 x\right)+5=3 x^{2}-6 x+5$
(6) the inverse of $f(x)$ is denoted by $f^{-1}(x)$

To find the inverse of $f(x)$, interchange x and y and we get $x=f(y)$ then isolate y to get $f^{-1}(x)$.
Given $f(x)=2 x-1$, find $f^{-1}(x)$.
Let $y=2 x-1$, interchange x and y, we get:
$x=2 y-1 \Longrightarrow x+1=2 y \Longrightarrow y=\frac{x+1}{2}=\frac{1}{2} x+\frac{1}{2}$, therefore the inverse of $f(x)$ is $f^{-1}(x)=\frac{1}{2} x+\frac{1}{2}$.
Note: It is possible that a function has an inverse equation but no inverse function like $y=f(x)=x^{2}$ has the inverse equation $x=y^{2}$ but this equation is not a function.

Example 1: Given $f(x)=x^{2}-3 x+7$, find:
(a) $f(2) \longrightarrow$ replace every x in $f(x)$ by 2 , we get: $f(2)=(2)^{2}-3(2)+7=5$
(b) $f(x+h)-f(x)$

To get $f(x+h)$, replace every x in $f(x)$ with $x+h$, then subtract $f(x)$.
$f(x+h)-f(x)=\left[(x+h)^{2}-3(x+h)+7\right]-\left[x^{2}-3 x+7\right]$

$$
=x^{2}+2 x h+h^{2}-3 x-3 h+7-x^{2}+3 x-7=2 x h+h^{2}-3 h
$$

Example 2: Given $f(x)=x^{3}+2 x-1$, find: $f(1)-f(0)$
$f(1)=(1)^{3}+2(1)-1=2$ and $f(0)=(0)^{3}+2(0)-1=-1 \Longrightarrow f(1)-f(0)=2-(-1)=3$

Example 3: Given $f(x)=\frac{-1}{x}$, find: $f(x+h)-f(x)$
To get $f(x+h)$, replace every x in $f(x)$ with $x+h$, then subtract $f(x)$.
$f(x+h)-f(x)=\frac{-1}{x+h}-\frac{-1}{x}=\frac{-x}{x(x+h)}-\frac{-(x+h)}{x(x+h)}=\frac{-x+(x+h)}{x(x+h)}=\frac{h}{x(x+h)}$

Intersection of 2 functions

Example 1:

Given $f(x)=x^{2}$ and $g(x)=-x+6$, find the points of intersection

Let $f(x)=g(x) \Longrightarrow x^{2}=-x+6$
$x^{2}+6 x-6=0$
This quadratic can be solved by factoring or by the quadratic formula.
The solution by factoring is $(x+3)(x-2)=0$
$x=-3$ and $x=2$
The corresponding y values are
$x=-3 \rightarrow y=9$ and $x=2 \rightarrow y=4$
Therefore the points of intersection are $(-3,9)$ and $(2,4)$

The graph of both functions shows these points of intersection.

Example 2:
Given $f(x)=x^{3}-2 x^{2}+x-1$ and $g(x)=-x^{2}+3 x-1$, find the points of intersection

Let $f(x)=g(x)$
$x^{3}-2 x^{2}+x-1=-x^{2}+3 x-1$
$x^{3}-x^{2}-2 x=0$
This equation can be solved by factoring
$x(x+1)(x-2)=0$
$x=-1 ; x=0$ and $x=2$
The corresponding y values are
$x=-1 \rightarrow y=-5 ; x=0 \rightarrow y=-1$
and $x=2 \rightarrow y=1$
Therefore the points of intersection are $(-1,-5) ;(0,-1)$ and $(2,1)$

The graph of both functions shows these points of intersection.

Division of 2 Polynomial functions

Given $\frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomial functions.

To divide, the degree of $P(x)$ must be greater than or equal to the degree of $Q(x)$.
If the degree of $P(x)$ is less than the degree of $Q(x)$; cannot divide.
Once the long division is done, we write the result as:

$$
\frac{P(x)}{Q(x)}=\text { result }+\frac{\text { remainder }}{Q(x)}
$$

Example 1: $\frac{3 x^{2}+3 x-5}{x+1}$, the degree of the numerator is 2 and the degree of the denominator is 1.
We must use the long division as shown:

$$
\begin{aligned}
& \begin{array}{c}
\\
+1
\end{array} \\
& \frac{-\left(3 x^{2}+3 x\right)}{-5} \\
& \text { Thus } \quad \frac{3 x^{2}+3 x-5}{x+1}=3 x+\frac{-5}{x+1}
\end{aligned}
$$

where result $=3 x$ and remainder $=-5$

Example 2: $\frac{2 x-7}{x^{2}+4}$,
the degree of the numerator is 1 and the degree of the denominator is 2 . We cannot divide.

