Implicit Differentiation - Logarithmic Differentiation

Implicit versus Explicit:
An explicit equation is the kind like
(a) $y=3 x^{2}+5$;
(b) $y=\sqrt{1+x^{3}}$;
(c) $y=\frac{2 x}{4-x^{2}}$;
(d) $y=\ln (3 x+7)$

Notice that the explicit equation has on Left Hand Side y and on Right Hand Side an expression with x only. It is clear that the variable y is a function of variable x.

An implicit equation is the kind like
(e) $y^{2}+x y=\sqrt{y}$; (f) $\ln \left(x^{2}+y^{2}\right)=2 x+3 y$; (g) $e^{x y}+\frac{x}{y}=4 y$; (h) $2 x^{2}-4 y^{3}=5 x y$

Notice that the implicit equation have both variables x and y can be mixed on both sides of the equation. Also the variable y is inside another function like in (f).

Derivative for Implicit equation

Example 1:
Given $3 x-y^{2}=x^{2}+y$, find $\frac{d y}{d x}$ or y^{\prime}
The technique is to find the derivative of each term in the equation. Keep in mind that y is a function of x; so the derivative of x is 1 but the derivative of y is y^{\prime}. In the table below, each term has its derivative:

$3 x \Longrightarrow 3$
$-y^{2} \Longrightarrow-2 y y^{\prime}$
$x^{2} \Longrightarrow 2 x$
$y \Longrightarrow y^{\prime}$

The derivative equation:

$$
\begin{aligned}
& 3-2 y y^{\prime}=2 x+y^{\prime} \\
& -2 y y^{\prime}-y^{\prime}=2 x-3 \\
& -y^{\prime}(2 y+1)=2 x-3 \\
& \frac{d y}{d x}=y^{\prime}=\frac{2 x-3}{-(2 y+1)}=\frac{3-2 x}{2 y+1}
\end{aligned}
$$

Notice: The answer of the derivative is in terms of x and y. Most implicit equations are not functions.

Find the equation of the tangent line at point $(1,1)$
slope: $m=\left.\frac{d y}{d x}\right|_{(1,1)}=y^{\prime}(1,1)$
$m=\frac{3-2(1)}{2(1)+1}=\frac{1}{3}$
Equation of the tangent line at point (1,1):
$y-1=\frac{1}{3}(x-1) \Longrightarrow y=\frac{1}{3} x+\frac{2}{3}$

Example 2:
Given $x y-4=y^{2}-6 x$, find the equation of the tangent line at point $(1,-1)$

$x y \Longrightarrow(1) y+\left(y^{\prime}\right) x$
$-4 \Longrightarrow 0$
$y^{2} \Longrightarrow 2 y y^{\prime}$
$-6 x \Longrightarrow-6$
$y+x y^{\prime}=2 y y^{\prime}-6$
$x y^{\prime}-2 y y^{\prime}=-y-6$
$y^{\prime}(x-2 y)=-y-6$
$\frac{d y}{d x}=y^{\prime}=\frac{-y-6}{x-2 y}$

slope: $m=\left.\frac{d y}{d x}\right|_{(1,-1)}=y^{\prime}(1,-1)$
$m=\frac{-(-1)-6}{(1)-2(-1)}=\frac{-5}{3}$
Equation of the tangent line at point $(1,-1)$:
$y-(-1)=-\frac{5}{3}(x-1) \Longrightarrow y=-\frac{5}{3} x+\frac{2}{3}$

Example 3:
Given $\ln (x+y)+e^{y}=1$, find the equation of the tangent line at point $(1,0)$

$\ln (x+y) \Longrightarrow \frac{1+y^{\prime}}{x+y}$
$e^{y} \Longrightarrow e^{y} y^{\prime}$
$1 \Longrightarrow 0$

The derivative equation:

$$
\begin{aligned}
& \frac{1+y^{\prime}}{x+y}+e^{y} y^{\prime}=0 \\
& 1+y^{\prime}+(x+y) e^{y} y^{\prime}=0 \\
& y^{\prime}\left(1+x e^{y}+y e^{y}\right)=-1 \\
& \frac{d y}{d x}=y^{\prime}=\frac{-1}{1+x e^{y}+y e^{y}}
\end{aligned}
$$

slope: $m=\left.\frac{d y}{d x}\right|_{(1,0)}=y^{\prime}(1,0)$
$m=\frac{-1}{1+(1) e^{0}+(0) e^{0}}=-\frac{1}{2}$
Equation of the tangent line at point $(1,0)$:

Example 4:
Given $\sqrt{x}-y^{2}=x-3 y$, find the equation of the tangent line at point $(4,1)$

\sqrt{x}	$\Longrightarrow \frac{1}{2 \sqrt{x}}$
$-y^{2}$	$\Longrightarrow-2 y y^{\prime}$
x	$\Longrightarrow 1$
$-3 y$	$\Longrightarrow-3 y^{\prime}$

The derivative equation:

$$
\begin{aligned}
& \frac{1}{2 \sqrt{x}}-2 y y^{\prime}=1-3 y^{\prime} \\
& 1-4 \sqrt{x} y y^{\prime}=2 \sqrt{x}-6 \sqrt{x} y^{\prime} \\
& y^{\prime}(6 \sqrt{x}-4 \sqrt{x} y)=2 \sqrt{x}-1 \\
& \frac{d y}{d x}=y^{\prime}=\frac{2 \sqrt{x}-1}{6 \sqrt{x}-4 \sqrt{x} y}
\end{aligned}
$$

slope: $m=\left.\frac{d y}{d x}\right|_{(4,1)}=y^{\prime}(4,1)$
$m=\frac{2 \sqrt{4}-1}{6 \sqrt{4}-4 \sqrt{4}(1)}=\frac{3}{4}$
Equation of the tangent line at point $(4,1)$:
$y-1=\frac{3}{4}(x-4) \Longrightarrow y=\frac{3}{4} x-2$

Example 5:
Given $e^{x}+y=e^{x y}+2$, find the equation of the tangent line at point $(0,2)$

$e^{x} \Longrightarrow e^{x}$
$y \Longrightarrow y^{\prime}$
$e^{x y} \Longrightarrow e^{x y}\left(y+x y^{\prime}\right)$
$2 \Longrightarrow 0$

The derivative equation:

$$
\begin{aligned}
& e^{x}+y^{\prime}=e^{x y}\left(y+x y^{\prime}\right) \\
& e^{x}+y^{\prime}=y e^{x y}+x e^{x y} y^{\prime} \\
& y^{\prime}\left(1-x e^{x y}\right)=y e^{x y}-e^{x} \\
& \frac{d y}{d x}=y^{\prime}=\frac{y e^{x y}-e^{x}}{1-x e^{x y}}
\end{aligned}
$$

slope: $m=\left.\frac{d y}{d x}\right|_{(0,2)}=y^{\prime}(0,2)$
$m=\frac{(2) e^{(0)(2)}-e^{0}}{1-(0) e^{(0)(2)}}=1$
Equation of the tangent line at point $(0,2)$:
$y-2=(1)(x-0) \Longrightarrow y=x+2$

$\underline{\text { Logarithmic Differentiation }}$

This technique is used on two situations:
(1) The question says to use logarithmic differentiation.
(2) No other formulas, rules or techniques can be used.

To apply this method, take \ln on both sides of the equation; then use implicit differentiation to get the derivative; finally isolate y^{\prime} and give the answer in terms of x.

Example 6:

Use logarithmic differentiation to find the derivative of $y=\frac{x^{3}\left(x^{2}+1\right)^{4}}{\sqrt[3]{3 x+2}}$
Take \ln on both sides of the equation and use \log properties:
$\ln (y)=\ln \left[\frac{x^{3}\left(x^{2}+1\right)^{4}}{\sqrt[3]{3 x+2}}\right]=\ln \left(x^{3}\right)+\ln \left(x^{2}+1\right)^{4}-\ln (3 x+2)^{1 / 3}$
$\ln (y)=3 \ln (x)+4 \ln \left(x^{2}+1\right)-\frac{1}{3} \ln (3 x+2)$
Use implicit differentiation and log formula derivatives:
$\frac{1}{y} y^{\prime}=3 \frac{1}{x}+4 \frac{2 x}{x^{2}+1}-\frac{1}{3} \frac{3}{3 x+2} \Longrightarrow y^{\prime}=y\left[\frac{3}{x}+\frac{8 x}{x^{2}+1}-\frac{1}{3 x+2}\right]=\frac{x^{3}\left(x^{2}+1\right)^{4}}{\sqrt[3]{3 x+2}}\left[\frac{3}{x}+\frac{8 x}{x^{2}+1}-\frac{1}{3 x+2}\right]$

The logarithmic differentiation is useful in this equation because without it you must use quotient rule, then for the numerator you use the product rule and finally chain rule; put all this together to get the derivative. It is long work and a messy expression that looks like this:
$y^{\prime}=\frac{\left[3 x^{2}\left(x^{2}+1\right)^{4}+4\left(x^{2}+1\right)^{3}(2 x) x^{3}\right](3 x+2)^{1 / 3}-\frac{1}{3}(3 x-2)^{-2 / 3}(3) x^{3}\left(x^{2}+1\right)^{4}}{(3 x+2)^{2 / 3}}$

Example 7: Find the derivative of $y=x^{5 x}$
We cannot use any previous formulas or rules.
x^{n} and a^{x} do not apply for this equation.
x^{n} means variable or function x to the power of a number n.
a^{x} means number a to the power of a variable or function x.
$x^{5 x}$ means variable or function of x to the power of a variable or function $5 x$.
Therefore we have to rely to the logarithmic differentiation:
Take \ln on both sides of the equation
$\ln (y)=\ln \left(x^{5 x}\right) \Longrightarrow \ln (y)=5 x \ln (x)$
The logarithmic differentiation is to use implicit differentiation on Left Hand Side and product rule on Right Hand Side as shown:
$\frac{1}{y} y^{\prime}=5 \ln (x)+5 x \frac{1}{x}=5 \ln (x)+5 \Longrightarrow y^{\prime}=y[5 \ln (x)+5]=x^{5 x}[5 \ln (x)+5]$

No other technique gives this result except the logarithmic differentiation.
Very useful for a special situation.

Example 8:
Use logarithmic differentiation to find the derivative of $y=\sqrt{\frac{4 x+1}{x^{4}\left(x^{3}+1\right)^{2}}}$
Take \ln on both sides of the equation and use \log properties:
$\ln (y)=\ln \left[\sqrt{\frac{4 x+1}{x^{4}\left(x^{3}+1\right)^{2}}}\right]=\frac{1}{2}\left[\ln (4 x+1)-\ln \left(x^{4}\right)-\ln \left(x^{3}+1\right)^{2}\right]$
$\ln (y)=\frac{1}{2} \ln (4 x+1)-2 \ln (x)-\ln \left(x^{3}+1\right)$
Use implicit differentiation and \log formula derivatives:
$\frac{1}{y} y^{\prime}=\frac{1}{2} \frac{4}{4 x+1}-2 \frac{1}{x}-\frac{3 x^{2}}{x^{3}+1} \Longrightarrow y^{\prime}=y\left[\frac{2}{4 x+1}-\frac{2}{x}-\frac{3 x^{2}}{x^{3}+1}\right]=\sqrt{\frac{4 x+1}{x^{4}\left(x^{3}+1\right)^{2}}}\left[\frac{2}{4 x+1}-\frac{2}{x}-\frac{3 x^{2}}{x^{3}+1}\right]$

Example 9: Find the derivative of $y=(x-1)^{x}$
We cannot use any previous formulas or rules.
x^{n} and a^{x} do not apply for this equation.
x^{n} means variable or function x to the power of a number n.
a^{x} means number a to the power of a variable or function x.
$x^{5 x}$ means variable or function of x to the power of a variable or function $5 x$.
Therefore we have to rely to the logarithmic differentiation:
Take \ln on both sides of the equation
$\ln (y)=\ln \left((x-1)^{x}\right) \Longrightarrow \ln (y)=x \ln (x-1)$
The logarithmic differentiation is to use implicit differentiation on Left Hand Side and product rule on Right Hand Side as shown:
$\frac{1}{y} y^{\prime}=(1) \ln (x-1)+x \frac{x-1}{=} \ln (x-1)+\frac{x}{x-1} \Longrightarrow y^{\prime}=y\left[\ln (x-1)+\frac{x}{x-1}\right]=(x-1)^{x}\left[\ln (x-1)+\frac{x}{x-1}\right]$

Example 10:
Use logarithmic differentiation to find the derivative of $y=\frac{x^{2} \sqrt{e^{x}}}{8 x+3}$
Take \ln on both sides of the equation and use \log properties:
$\ln (y)=\ln \left[\frac{x^{2} \sqrt{e^{x}}}{8 x+3}\right]=\ln \left(x^{2}\right)+\frac{1}{2} \ln \left(e^{x}\right)-\ln (8 x+3)$
$\ln (y)=2 \ln (x)+\frac{1}{2} x-\ln (8 x+3)$
Use implicit differentiation and \log formula derivatives:
$\frac{1}{y} y^{\prime}=2 \frac{1}{x}+\frac{1}{2}-\frac{8}{8 x+3} \Longrightarrow y^{\prime}=y\left[\frac{2}{x}+\frac{1}{2}-\frac{8}{8 x+3}\right]=\frac{x^{2} \sqrt{e^{x}}}{8 x+3}\left[\frac{2}{x}+\frac{1}{2}-\frac{8}{8 x+3}\right]$

