Limit Concept

Intuitive Definition:

- Given a function $f(x)$ as a graph or an equation, find y value as x approaches a value c.
- The concept of approaching value c from both sides of c is important. It can be done visually or by choosing values very close to the value c.
- The value on the left of c should be $c-0.001$ or closer and the value on the right of c should be $c+0.001$ or closer.
- If the limit of the function $f(x)$ on both sides of $x=c$ is the same value L, then the limit exists and its value is the y value L.
- If the limit on both sides is different, we say: no limit or limit does not exist (D.N.E.)

$\underline{\text { Graphical Limit }}$

limit exists at $x=c$

$$
\lim _{x \rightarrow c} f(x)=L
$$

limit does not exist at $x=c$

$\lim _{x \rightarrow c} f(x)=$ D.N.E.
$\underline{\text { Limit Notation \& Symbol : }}$
A function $f(x)$ is given by a graph or an equation; x approaches a value c and we want to find if the y value exists or does not exist (no limit).

If the limit exists $\longrightarrow \lim _{x \rightarrow c} f(x)=L$; if no limit exists $\longrightarrow \lim _{x \rightarrow c} f(x)=$ D.N.E.
Note: Pay attention to the presentation of the notation.

Example 1: Given the graph of a function $f(x)$, find:

(a) $\lim _{x \rightarrow 0} f(x)$

Examine left of $x=0$,
note:
minus sign is shown on top right of value 0
$\lim _{x \rightarrow 0^{-}} f(x)=-3$
Examine right of $x=0$,
note:
plus sign is shown on top right of value 0
$\lim _{x \rightarrow 0^{+}} f(x)=-\frac{1}{2}$
y values are not the same; therefore
$\lim _{x \rightarrow 0} f(x)=$ D.N.E.
Note: point at $x=0 ; y=f(0)=-3$ (full dot) has coordinates $(0,-3)$
(c) $\lim _{x \rightarrow 2} f(x)$

Examine left of $x=2$,
note:
(b) $\lim _{x \rightarrow-3} f(x)$

Visually, y value to the left of $x=-3$ is same y value to the right of $x=-3$; so we say:
$\lim _{x \rightarrow-3} f(x)=0$

Note: at $x=-3$, point does not exist but the limit exits.
minus sign is shown on top right of value 2
$\lim _{x \rightarrow 2^{-}} f(x)=+\infty$
Examine right of $x=2$,
note:
plus sign is shown on top right of value 2
$\lim _{x \rightarrow 2^{+}} f(x)=-\infty$
y values are not the same; therefore
$\lim _{x \rightarrow 2} f(x)=$ D.N.E.

Note: $f(x)$ is undefined at $x=2$ (vertical asymptote)
(d) $\lim _{x \rightarrow+\infty} f(x)$

The curve of $f(x)$ as x approaches infinity shows that y value approaches -1 ; so we say:
$\lim _{x \rightarrow+\infty} f(x)=-1$
Note: at x is approaching infinity, y approaches -1 (horizontal asymptote).

Example 2 (parabola): Given the equation of a function $y=f(x)=3 x^{2}+5 x-7$, find: $\lim _{x \rightarrow-1} f(x)$
Since the function is a parabola, replace in $f(x)$ each x with -1 ; we get
$y=f(-1)=3(-1)^{2}+5(-1)-7=-9$

Therefore: $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}\left(3 x^{2}+5 x-7\right)$
$\lim _{x \rightarrow-1} f(x)=3(-1)^{2}+5(-1)-7=-9$
Note:
Pay attention to the presentation of the notation.
the graph shows that $\lim _{x \rightarrow-1} f(x)=-9$
Note: The graph is not part of the solution.
It is just visual!

Example 3 (piecewise graph): Given the equation of a function $y=f(x)=\left\{\begin{array}{lll}x^{2}+5 x & \text { if } & x \leq 1 \\ -x+4 & \text { if } & x>1\end{array}\right.$, find: $\lim _{x \rightarrow 1} f(x)$
since $f(x)$ is a piecewise : at $x<1$ (left side of $x=1$) use the upper equation; at $x>1$ (right side of $x=1$) use the lower equation.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+5 x\right)=6$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(-x+5)=4$
$\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \rightarrow \lim _{x \rightarrow 1} f(x)=$ D.N.E.

Note:

Pay attention to the presentation of the notation.
the graph shows that $\lim _{x \rightarrow 1} f(x)=D . N . E$.
Notice: The point exists at $x=1$ with
$y=f(1)=(1) 2+5(1)=6$
Point coordinates: $(1,6)$
The point at $(1,4)$ is an empty dot.

Note: The graph is not part of the solution.
It is just visual !

Example 4 (rational function): Given the equation of a function $y=f(x)=\frac{x^{2}-25}{x^{2}}$, find: $\lim _{x \rightarrow 0} f(x)$
To test $\lim _{x \rightarrow 0^{-}} f(x)$, use $x=-0.0001$
$\frac{(-0.0001)^{2}-25}{(-0.0001)^{2}}=-24999999$
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty$
To test $\lim _{x \rightarrow 0^{+}} f(x)$, use $x=0.0001$
$\frac{(0.0001)^{2}-25}{(0.0001)^{2}}=-24999999$
$\lim _{x \rightarrow 0^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} \rightarrow f(x)=-\infty$
Note:
limit of a function undefined at $x=0$.
the graph shows that $\lim _{x \rightarrow 0} f(x)=-\infty$
The curve of $f(x)$ shows that on both sides of $x=0$, the y value goes to negative infinity. Also observe that:

Note: The graph is not part of the solution. It is just visual !
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=1$

Example 5 (limit to infinity): Given the equation of a function $y=f(x)=\frac{24-6 x^{2}}{3 x^{2}+4}$, find $\lim _{x \rightarrow-\infty} f(x)$

Limit to infinity implies dominant terms of $f(x)$: use term with highest power of x in numerator divided by term with highest power of x in denominator.
$\frac{-6 x^{2}}{3 x^{2}}$ is reduced to -2 so $\lim _{x \rightarrow-\infty} f(x)=-2$
Note: if you replace x with a very big negative number in $f(x)$,
the y value will be 2 or very close to -2 .
the graph shows that $\lim _{x \rightarrow-\infty} f(x)=-2$
Try it with your calculator.
Another way:
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{24-6 x^{2}}{3 x^{2}+4}$
divide each term by x^{2}
$\lim _{x \rightarrow-\infty} \frac{\frac{24}{x^{2}}-\frac{6 x^{2}}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{4}{x^{2}}}$ then reduce:
$\lim _{x \rightarrow-\infty} \frac{\frac{24}{x^{2}}-6}{3+\frac{4}{x^{2}}}=\frac{0-6}{3+0}=-2$

Note: The graph is not part of the solution. It is just visual!

Example 6 (rational function): Given the equation of a function $y=f(x)=\frac{4-x^{2}}{x-1}$,
find: (a) $\lim _{x \rightarrow 1^{-}} f(x)$; (b) $\lim _{x \rightarrow 1^{+}} f(x) ;$ (c) $\lim _{x \rightarrow+\infty} f(x) ;(\mathrm{d}) \lim _{x \rightarrow-\infty} f(x)$
Note: The solution of each question must be shown without using a graph. The graph of $f(x)$ is displayed for a visual verification. It is not the solution.

(6 a) one sided limit: $\lim _{x \rightarrow 1^{-}} f(x)$
choose $x=0.999$ and replace in $f(x)$:
$\frac{4-(0.999)^{2}}{(0.999)-1}=-3002$
choose $x=0.9999$ and replace in $f(x)$:
$\frac{4-(0.9999)^{2}}{(0.9999)-1}=-30002$
The calculations show that the closer we choose from the left side of $x=1$,
we get a bigger negative number.
Therefore $\lim _{x \rightarrow 1^{-}} f(x)=-\infty$
(6 b) one sided limit: $\lim _{x \rightarrow 1^{+}} f(x)$
choose $x=1.001$ and replace in $f(x): \frac{4-(1.001)^{2}}{(1.001)-1}=2998$
choose $x=1.0001$ and replace in $f(x): \frac{4-(1.0001)^{2}}{(1.0001)-1}=29998$
The calculations show that the closer we choose from the right side of $x=1$, we get a bigger positive number.

Therefore $\lim _{x \rightarrow 1^{+}} f(x)=+\infty$
(6 c) limit to infinity: $\lim _{x \rightarrow+\infty} f(x)$
Limit to infinity implies dominant terms of $f(x)$:
use term with highest power of x in numerator divided by term with highest power of x in denominator.
$\frac{-x^{2}}{x}$ is reduced to $-x$; when $x \rightarrow+\infty, y \rightarrow-\infty$; so $\lim _{x \rightarrow+\infty} f(x)=-\infty$
Note: if you replace x with a very big positive number in $f(x)$, the y value will be a very big negative number. Try it with your calculator.
(6 d) limit to infinity: $\lim _{x \rightarrow-\infty} f(x)$
Limit to infinity implies dominant terms of $f(x)$:
use term with highest power of x in numerator divided by term with highest power of x in denominator.
$\frac{-x^{2}}{x}$ is reduced to $-x$; when $x \rightarrow-\infty, y \rightarrow+\infty$; so $\lim _{x \rightarrow-\infty} f(x)=+\infty$
Note: if you replace x with a very big negative number in $f(x)$, the y value will be a very big positive number. Try it with your calculator.

Example 7 (indeterminate form $\frac{0}{0}$):
Given the equation of a function $y=f(x)=\frac{x^{2}-2 x-3}{x^{2}-1}$, find: $\lim _{x \rightarrow-1} f(x)$
replace in $f(x), x$ with -1 , we get:
$\frac{(-1)^{2}-2(-1)-3}{(-1)^{2}-1}=\frac{0}{0}$ indeterminate form; use factoring:
$\frac{(x+1)(x-3)}{(x+1)(x-1)}=\frac{x-3}{x-1}$
$\lim _{x \rightarrow-1} \frac{x-3}{x-1}=\frac{(-1)-3}{(-1)-1}=2$

Note: Indeterminate form implies Algebra work to be done to remove the indetermination. Indeterminate is not the same as undefined!

the curve has an empty dot at point $(-1,2)$.
The empty dot indicates a break in the curve. Note: The graph is not part of the solution. It is just visual !

Example 8 (indeterminate form $\frac{0}{0}$):
Given the equation of a function $y=f(x)=\frac{\frac{4}{x-2}-2}{x-4}$, find: $\lim _{x \rightarrow 4} f(x)$
replace in $f(x), x$ with 4 , we get:
$\frac{\frac{4}{(4)-2}-2}{(4)-4}=\frac{0}{0}$ indeterminate form;
common denominator and reducing:
$\frac{\frac{4-2(x-2)}{x-2}}{x-4}=\frac{\frac{8-2 x}{x-2}}{x-4}=\frac{-2(x-4)}{x-2} \cdot \frac{1}{x-4}$
$=\frac{-2}{x-2} \Longrightarrow \lim _{x \rightarrow 4} \frac{-2}{x-2}=-1$
Note: Algebra work to be done to remove the indetermination is the common denominator to reduce fractions.

the curve has an empty dot at point $(4,-1)$. The point $(4,-1)$ does not exist on the curve. The curve is the reduced function $f(x)=\frac{2}{2-x}$ Note: The graph is not part of the solution. It is just visual !

Example 9: Given the equation of a function $y=f(x)=\frac{\sqrt{x+6}-3}{x-3}$, find: $\lim _{x \rightarrow 3} f(x)$
replace in $f(x), x$ with 3 , we get:
$\frac{\sqrt{(3)+6}-3}{(3)-3}=\frac{0}{0}$ indeterminate form;
rationalize numerator and reducing:
$\frac{(\sqrt{x+6}-3)(\sqrt{x+6}+3)}{(x-3)(\sqrt{x+6}+3)}$
$=\frac{x+6-9}{(x-3)(\sqrt{x+6}+3)}=\frac{x-3}{(x-3)(\sqrt{x+6}+3)}$
$\lim _{x \rightarrow 3} \frac{1}{\sqrt{x+6}+3}=\frac{1}{6}$
Note: Algebra work to be done to remove the indetermination is rationalize numerator to reduce radicals.

the curve has an empty dot at point $\left(3, \frac{1}{6}\right)$.
The point $\left(3, \frac{1}{6}\right)$ does not exist on the curve.
The curve is the reduced function
$f(x)=\frac{1}{\sqrt{x+6}+3}$
Note: The graph is not part of the solution. It is just visual !

$\underline{\text { Limit Properties : }}$

Let a and k be real numbers; x is a variable ; p a positive integer
(1) $\lim _{x \rightarrow a}(k)=k$
(2) $\lim _{x \rightarrow a}(x)=a$
(3) $\lim _{x \rightarrow a}\left(x^{p}\right)=a^{p}$
(4) $\lim _{x \rightarrow a}(\sqrt[p]{x})=\sqrt[p]{a}$
(5) $\lim _{x \rightarrow a}(k f(x))=k \lim _{x \rightarrow a} f(x)$
(6) $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
(7) $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(8) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$
(9) $\lim _{x \rightarrow a}(f(x))^{p}=\left(\lim _{x \rightarrow a} f(x)\right)^{p}$
(10) $\lim _{x \rightarrow a} \sqrt[p]{f(x)}=\sqrt[p]{\lim _{x \rightarrow a} f(x)}$

