Area and the Riemann Sum

Let $f(x)$ be a continuous function and
$f(x)>0$ on a closed interval $[a, b]$ as shown
on the graph.
The Riemann Sum theory shows that the area of the region R has area $=\int_{a}^{b} f(x) d x$
The area is evaluated by the definite integral.

The Riemann Sum theory also shows that

if $f(x)<0$ on $[a, b]$,
the definite integral will give a negative answer
(negative area ??)
To avoid this situation, always sketch the region of the area;
if the region is above the x-axis, it's fine;
if the region is below the x-axis, take the absolute value of the definite integral.

Example 1:

Find the area of the region bounded by $f(x)=4 x^{2}$, the x-axis from $x=3$ to $x=6$.

The graph shows that the region is above the x-axis.

Then the area: $A=\int_{3}^{6} 4 x^{2} d x=\left.\left(\frac{4}{3} x^{3}\right)\right|_{3} ^{6}$
$A=\left[\frac{4}{3}(6)^{3}\right]-\left[\frac{4}{3}(3)^{3}\right]=288-36=252$ square units

Note Area is always in square units.
Definite integrals have no units.

Example 2:

Find the area of the region bounded by $f(x)=4-x$, the x-axis from $x=2$ to $x=4$.

The graph shows that the region is above the x-axis.

Then the area: $A=\int_{2}^{4}(4-x) d x=\left.\left(4 x-\frac{1}{2} x^{2}\right)\right|_{2} ^{4}$
$A=\left[4(4)-\frac{1}{2}(4)^{2}\right]-\left[4(2)-\frac{1}{2}(2)^{2}\right]$
$A=8-6=2$ square units

Example 3:

Find the area of the region bounded by $f(x)=-x^{3}$, the x-axis from $x=0$ to $x=2$.

The graph shows that the region is below the x-axis;
 must insert a negative sign in the definite integral.

Then the area: $A=\int_{0}^{2}-\left(-x^{3}\right) d x=\left.\left(\frac{1}{4} x^{4}\right)\right|_{0} ^{2}$
$A=\left[\frac{1}{4}(2)^{4}\right]-\left[\frac{1}{4}(0)^{4}\right]$
$A=4-0=4$ square units
Note: the answer of the area is always a positive number

Example 4:

Find the area of the region bounded by $f(x)=x^{3}-x$, the x-axis from $x=0$ to $x=2$.

The graph shows that the region is in 2 parts.
region A_{1} from $x=0$ to $x=1$,
the region is below the x-axis;
must insert a negative sign in the definite integral
region A_{2} from $x=1$ to $x=2$,
the region is above the x-axis;
Therefore:
$A_{1}=\int_{0}^{1}-\left(x^{3}-x\right) d x=\left.\left(-\frac{1}{4} x^{4}+\frac{1}{2} x^{2}\right)\right|_{0} ^{1}$
$A_{1}=\left[-\frac{1}{4}(1)^{4}+\frac{1}{2}(1)^{2}\right]-\left[-\frac{1}{4}(0)^{4}+\frac{1}{2}(0)^{2}\right]=\frac{1}{4}$
$A_{2}=\int_{1}^{2}\left(x^{3}-x\right) d x=\left.\left(\frac{1}{4} x^{4}-\frac{1}{2} x^{2}\right)\right|_{1} ^{2}$

$A_{2}=\left[\frac{1}{4}(2)^{4}-\frac{1}{2}(2)^{2}\right]-\left[\frac{1}{4}(1)^{4}-\frac{1}{2}(1)^{2}\right]=\frac{9}{4}$
total area: $A_{1}+A_{2}=\frac{1}{4}+\frac{9}{4}=\frac{5}{2}=2.5$ square units

Area of a region between two graphs

Let two continuous functions $f(x)$ and $g(x)$
To find the points of intersection: make $f(x)=g(x)$ and solve for x.
Let them be $x=a$ and $x=b$,
then the points of intersection are:
$(a, f(a)=g(a))$ and $(b, f(b)=g(b))$.
Find the area of the region between the two graphs (see graph)
Area $=\int_{a}^{b}[f(x)-g(x)] d x$
Visual proof is shown below.
In general, the region R is evaluated between $x=a$ and $x=b$.
Integrate the difference between highest y function and lowest y function.
Note: Remember to graph the region between 2 curves if requested.

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

$$
\begin{gathered}
\text { Area of } R=\int_{a}^{b}[f(x)-g(x)] d x=\text { Area of } R_{1}-\text { Area of } R_{2} \\
\text { Area of } R=\int_{a}^{b}[f(x)-g(x)] d x
\end{gathered}
$$

Note: Remember to graph the region between 2 curves if requested.

Example 5:

Find the area of the region bounded by $f(x)=x^{2}+4, g(x)=x+1$ from $x=0$ to $x=1$.

The graph shows no point of intersection since

$$
x^{2}+4=x+1 \rightarrow x^{2}-x+3=0 \rightarrow \text { no solution. }
$$

Area of the region: $A=\int_{0}^{1}[f(x)-g(x)] d x$

$$
\begin{aligned}
& A=\int_{0}^{1}\left[\left(x^{2}+4\right)-(x+1)\right] d x=\int_{0}^{1}\left[x^{2}-x+3\right] d x \\
& A==\left.\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+3 x\right)\right|_{0} ^{1} \\
& A=\left[\frac{1}{3}(1)^{3}-\frac{1}{2}(1)^{2}+3(1)\right]-\left[\frac{1}{3}(0)^{3}-\frac{1}{2}(0)^{2}+3(0)\right] \\
& A=\frac{17}{6}-0=\frac{17}{6} \approx 2.83 \text { square units }
\end{aligned}
$$

Example 6:
Find the area of the region bounded by $f(x)=-x^{2}+1, g(x)=-x-1$.

The graph shows two points of intersection:
$-x-1=-x^{2}+1 \rightarrow x^{2}-x-2=0 \rightarrow(x-2)(x+1)=0$
$x=-1 \rightarrow y=f(-1)=g(-1)=0$
$x=2 \rightarrow y=f(2)=g(2)=-3$
Area of the region: $A=\int_{-1}^{2}[f(x)-g(x)] d x$
$A=\int_{-1}^{2}\left[\left(-x^{2}+1\right)-(-x-1)\right] d x=\int_{-1}^{2}\left[-x^{2}+x+2\right] d x$
$A==\left.\left(-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+2 x\right)\right|_{-1} ^{2}$

$A=\left[-\frac{1}{3}(2)^{3}+\frac{1}{2}(2)^{2}+2(2)\right]-\left[-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right]$
$A=\frac{10}{3}-\frac{-7}{6}=\frac{9}{2}=4.5$ square units

Example 7:

Find the area of the region bounded by $f(x)=x^{3}-5$, the x-axis from $x=-1$ to $x=1$.

The graph shows no point of intersection between $x=-1$ and $x=1$

Area of the region: $A=\int_{-1}^{1}[g(x)-f(x)] d x$
where $f(x)=x^{3}-5$ and $g(x)=0(x$-axis $)$

$$
A=\int_{-1}^{1}\left[(0)-\left(x^{3}-5\right)\right] d x=\int_{-1}^{1}\left[-x^{3}+5\right] d x
$$

$A=\left.\left(-\frac{1}{4} x^{4}+5 x\right)\right|_{-1} ^{1}$
$A=\left[-\frac{1}{4}(-1)^{4}+5(-1)\right]-\left[-\frac{1}{4}(1)^{4}+5(1)\right]$

$A=\frac{19}{4}-\frac{-21}{4}=10$ square units

Example 8:

Find the area of the region bounded by $f(x)=x^{3}-2 x+1, g(x)=x^{2}+1$.

The graph shows that three points of intersection:

$$
\begin{aligned}
& x^{3}-2 x+1=x^{2}+1 \rightarrow x^{3}-x^{2}-2 x=0 \rightarrow x(x-2)(x+1)=0 \\
& x=-1 \rightarrow y=f(-1)=g(-1)=2 \\
& x=0 \rightarrow y=f(0)=g(0)=1 ; x=2 \rightarrow y=f(2)=g(2)=5
\end{aligned}
$$

Area of the region: $A=A_{1}+A_{2}$

$$
A=\int_{-1}^{0}[f(x)-g(x)] d x+\int_{0}^{2}[g(x)-f(x)] d x
$$

$$
A_{1}=\int_{-1}^{0}\left[\left(x^{3}-2 x+1\right)-\left(x^{2}+1\right)\right] d x=\int_{-1}^{0}\left[x^{3}-x^{2}-2 x\right] d x
$$

$$
A_{1}=\left.\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-x^{2}\right]\right|_{-1} ^{0}=\frac{5}{12}
$$

$A_{2}=\int_{0}^{2}\left[\left(x^{2}+1\right)-\left(x^{3}-2 x+1\right)\right] d x=\int_{0}^{2}\left[-x^{3}+x^{2}+2 x\right] d x=\left.\left[-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+x^{2}\right]\right|_{0} ^{2}=\frac{8}{3}$
total area: $A_{1}+A_{2}=\frac{5}{12}+\frac{8}{3}=\frac{37}{12} \approx 3.083$ square units

Example 9:

Find the area of the region bounded by $f(x)=x^{2}-1, g(x)=x-1$ from $x=0$ to $x=2$.

The graph shows that two points of intersection:
$x^{2}-1=x-1 \rightarrow x^{2}-x=0 \rightarrow x(x-1)=0$
$x=0 \rightarrow y=f(0)=g(0)=-1$
$x=1 \rightarrow y=f(1)=g(1)=0 ; x=2 \rightarrow f(2)=3 ; g(2)=1$
Area of the region: $A=A_{1}+A_{2}$
$A=\int_{0}^{1}[g(x)-f(x)] d x+\int_{1}^{2}[f(x)-g(x)] d x$
$A_{1}=\int_{0}^{1}\left[(x-1)-\left(x^{2}-1\right)\right] d x=\int_{0}^{1}\left[-x^{2}+x\right] d x$

$A_{1}=\left.\left[-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]\right|_{0} ^{1}=\frac{1}{6}$
$A_{2}=\int_{1}^{2}\left[\left(x^{2}-1\right)-(x-1)\right] d x=\int_{1}^{2}\left[x^{2}-x\right] d x=\left.\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]\right|_{1} ^{2}=\frac{1}{2}$
total area: $A_{1}+A_{2}=\frac{1}{6}+\frac{1}{2}=\frac{2}{3} \approx 0.67$ square unit

Consumer Surplus

Given the demand $D(x)=p(x)$ and
the supply $S(x)=p(x)$
To find the equilibrium point: make $D(x)=S(x)$
and solve for x.
Let x_{e} and $y_{\mathrm{e}}=p_{\mathrm{e}}$ be the coordinates of equilibrium point;
then the consumer surplus is evaluated:
C.S. $=\int_{0}^{x_{\mathrm{e}}}\left[D(x)-y_{\mathrm{e}}\right] d x$
C.S. is the region as shown on the graph.

Note: Remember to graph the region between 2 curves if requested.

Producer Surplus

Given the demand $D(x)=p(x)$ and
the supply $S(x)=p(x)$
To find the equilibrium point: make $D(x)=S(x)$
and solve for x.
Let x_{e} and $y_{\mathrm{e}}=p_{\mathrm{e}}$ be the coordinates of equilibrium point;
then the producer surplus is evaluated:

$$
\text { P.S. }=\int_{0}^{x_{\mathrm{e}}}\left[y_{\mathrm{e}}-S(x)\right] d x
$$

P.S. is the region as shown on the graph.

Note: Remember to graph the region between 2 curves if requested.

Example 10:

Given the demand $p=-x^{2}+100$ at the equilibrium quantity of 7 units, sketch and identify the C.S. region, then evaluate the C.S.

The graph shows the C.S. region.
To find the equilibrium price: replace $x_{\mathrm{e}}=7$
in the demand equation: $p_{\mathrm{e}}=-7^{2}+100=51$
C.S. $=\int_{0}^{x_{e}}\left[\right.$ demand $\left.-p_{\mathrm{e}}\right] d x$
C.S. $=\int_{0}^{7}\left[\left(-x^{2}+100\right)-51\right] d x=\int_{0}^{7}\left[-x^{2}+49\right] d x$
C.S. $=\left.\left(-\frac{1}{3} x^{3}+49 x\right)\right|_{0} ^{7}=\frac{686}{3}-0=\frac{686}{3} \approx \$ 228.67$

Example 11:

Given the supply $p=x^{2}+x+40$ at the equilibrium price of $130 \$ /$ per unit, sketch and identify the $P . S$. region, then evaluate the P.S.

To find the equilibrium quantity: replace $p_{\mathrm{e}}=130$
in the demand equation: $130=x^{2}+x+40$

$$
x^{2}+x-90=0 \rightarrow(x+10)(x-9)=0 \rightarrow x_{\mathrm{e}}=9
$$

$$
P . S .=\int_{0}^{x_{\mathrm{e}}}\left[p_{\mathrm{e}}-\text { supply }\right] d x
$$

$$
P . S .=\int_{0}^{9}\left[130-\left(x^{2}+x+40\right)\right] d x
$$

$$
P . S .=\int_{0}^{9}\left[-x^{2}-x+90\right] d x=\left.\left(-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+90 x\right)\right|_{0} ^{9}
$$

$$
P . S .=\frac{1053}{2}-0=\frac{1053}{2} \approx \$ 526.50
$$

Example 12:

Given the demand $p=-x^{2}+64$ and the supply $p=2 x+29$, sketch and identify the $C . S$. and the $P . S$. regions, then evaluate the P.S.

To find the equilibrium price: make demand = supply
$-x^{2}+64=2 x+29 \rightarrow x^{2}+2 x-35=0 \rightarrow(x-5)(x+7)=0$
The equilibrium point at $(5,39)$
P.S. $=\int_{0}^{x_{\mathrm{e}}}\left[p_{\mathrm{e}}-\right.$ supply $] d x$
P.S. $=\int_{0}^{5}[39-(2 x+29)] d x=\int_{0}^{5}[-2 x+10] d x$
P.S. $=\left.\left(x^{2}+10 x\right)\right|_{0} ^{5}=25-0=\$ 25.00$

$\underline{\text { Area of a region between two curves (one or two is/are function(s) of } f(y) \text {) }}$

If one of the two curves is a function of y like $x=f(y)$
To find the points of intersection: make $f(y)=g(y)$ and solve for y.
Let them be $y=a$ and $y=b$,
then the points of intersection are:
$(f(a)=g(a), a)$ and $(f(b)=g(b), b)$.
Find the area of the region between the two graphs
by integrating with respect to y (see graph)
Area $=\int_{a}^{b}[f(y)-g(y)] d y$
Visual proof is shown below.

In general, the region R is evaluated between $y=a$ and $y=b$.
Integrate the difference between right x function and left x function.
Note: Remember to graph the region between 2 curves if requested.

Example 13:

Find the area of the region bounded by $f(y)=-y^{2}+4$ and $g(y)=-y-2$
The graph shows the shaded region has two points of intersections:
$g(y)=f(y) \Longrightarrow-y-2=-y^{2}+4$
$y^{2}-y-6=0 \rightarrow(y-3)(y+2)=0$
$y=3 \rightarrow x=f(3)=g(3)=-5$
$y=-2 \rightarrow x=f(-2)=g(-2)=0$
Area: $A=\int_{-2}^{3}[f(y)-g(y)] d y$
$A=\int_{-2}^{3}\left[\left(-y^{2}+4\right)-(-y-2)\right] d y$
$A=\int_{-2}^{3}\left[-y^{2}+y+6\right] d y$
$A=\left.\left(-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}+6 y\right)\right|_{-2} ^{3}$

$A=\frac{27}{2}-\frac{-22}{3}=\frac{125}{6} \approx 20.83$ square units

Example 14:

Find the area of the region bounded by $f(y)=y^{2}+y-2$ and $g(y)=2 y^{2}-2$
The graph shows the shaded region has two points of intersections:

$$
\begin{aligned}
& g(y)=f(y) \Longrightarrow 2 y^{2}-2=y^{2}+y-2 \\
& y^{2}-y=0 \rightarrow y(y-1)=0 \\
& y=0 \rightarrow x=f(0)=g(0)=-2 \\
& y=1 \rightarrow x=f(1)=g(1)=0
\end{aligned}
$$

Area: $A=\int_{0}^{1}[f(y)-g(y)] d y$
$A=\int_{0}^{1}\left[\left(y^{2}+y-2\right)-\left(2 y^{2}-2\right)\right] d y$
$A=\int_{0}^{1}\left[-y^{2}+y\right] d y$
$A=\left.\left(-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}\right)\right|_{0} ^{1}$
$A=\frac{1}{6}-0=\frac{1}{6} \approx 0.17$ square unit

Example 15:

Find the area of the region bounded by $f(y)=4 y-8, g(y)=y^{3}-8$ between $y=1$ and $y=2$
The graph shows three points of intersections:
$f(y)=g(y) \Longrightarrow y^{3}-8=4 y-8$
$y^{3}-4 y=0 \rightarrow y(y-2)(y+2)=0$
$y=-2 \rightarrow x=f(-2)=g(-2)=-16$
$y=0 \rightarrow x=f(0)=g(0)=-8$
$y=1 \rightarrow f(1)=-4 ; g(1)=-7$
Area: $A=\int_{1}^{2}[f(y)-g(y)] d y$
$A=\int_{1}^{2}\left[(4 y-8)-\left(y^{3}-8\right)\right] d y$
$A=\int_{1}^{2}\left[-y^{3}-4 y\right] d y$
$A=\left.\left(-\frac{1}{4} y^{4}-2 y^{2}\right)\right|_{1} ^{2}$

$A=4-\frac{7}{4}=\frac{9}{4}=2.25$ square units

