Practice Assignment 5

In this fifth practice assignment, you will review topics from
7 th edition: sections $6.6,8.6,10.1$ and 10.2 .
8th edition: sections $6.5,10.1$ and 10.2 plus L'Hôpital's Rule.
Try all problems for practice.
If you have difficulties, ask for help in class or in the instructor's office; all answers are shown in another file.
(1) $\lim _{x \rightarrow \infty} \frac{2 x^{3}+\sqrt{x}}{3-5 x^{3}}$
(2) $\lim _{x \rightarrow 0} \frac{e^{-3 x}+x^{3}-1}{1-e^{5 x}}$
(3) $\lim _{x \rightarrow 0} \frac{e^{x}-x^{2}-1}{\sin 2 x}$
(4) $\lim _{x \rightarrow 0} \frac{e^{x}-x^{3}-1}{\sin \left(\frac{x}{2}\right)}$
(5) $\lim _{x \rightarrow \infty} \frac{4 e^{3 x}-x^{2}}{1+x+6 e^{3 x}}$
(6) $\lim _{x \rightarrow \infty} \frac{e^{2 / x}-3 x^{2}}{4 x^{2}-e^{3 / x}}$
(7) $\lim _{x \rightarrow 0} \frac{\cos 3 x-5 x-1}{\tan 2 x}$
(8) $\lim _{x \rightarrow \pi} \frac{3 \sin x+2 \tan 3 x}{4 \tan 2 x-x+\pi}$
(9) $\lim _{x \rightarrow 2} \frac{\cos (x-2)+2 x-5}{x-4+2 e^{x-2}}$
(10) $\lim _{x \rightarrow \infty} \frac{\sqrt{x+2}+5 \sqrt{x+3}}{\sqrt{4 x+1}}$
(11) $\lim _{x \rightarrow 0} \frac{6 x^{3}-5 x}{e^{x}-1}$
(12) $\lim _{x \rightarrow-2} \frac{3 x^{3}+11 x^{2}+8 x-4}{5 x^{3}+21 x^{2}+24 x+4}$
(13) $\lim _{x \rightarrow \infty} \frac{(3 x-4)^{3}}{9 x^{2}-5 x^{3}}$
(14) $\lim _{x \rightarrow \pi} \frac{\sin 3 x+\pi-x}{2-\sec \frac{x}{3}+\tan 2 x}$
(15) $\lim _{x \rightarrow 2^{+}} \frac{2-x-e^{x-2}}{x^{2}-4}$
(16) $\int_{4}^{\infty} \frac{6}{(4-3 x)^{1 / 3}} d x$
(17) $\int_{-\infty}^{1} \frac{4 x-6}{\left(x^{2}-3 x+3\right)^{3}} d x$
(18) $\int_{1}^{\infty} \frac{6 x}{9+x^{2}} d x$
(19) $\int_{-\infty}^{-2} \frac{2 x^{3}+1}{\left(x^{4}+2 x\right)^{3}} d x$
(20) $\int_{1}^{\infty} 6 x^{2} e^{1-x^{3}} d x$
(21) $\int_{0}^{\infty} \frac{9 x^{2}}{\left(x^{3}+1\right)^{5 / 3}} d x$
(22) $\int_{0}^{\infty} \frac{x^{2}+1}{\left(x^{3}+3 x+4\right)^{5 / 2}} d x$
(23) $\int_{0}^{1} \frac{2 x+7}{\sqrt[3]{x^{2}+7 x-8}} d x$
(24) $\int_{0}^{1} \frac{e^{2 x}}{1-e^{2 x}} d x$
(25) $\int_{1}^{2} \frac{2 x^{2}+1}{\sqrt{\left(2 x^{3}+3 x-5\right)^{3}}} d x$
(26) $\int_{3}^{7} \frac{e^{\sqrt{x-3}}}{\sqrt{x-3}} d x$
(27) $\int_{0}^{\pi / 4} \cot 3 x d x$
(28) $\int_{0}^{\pi / 4} \sec 2 x \tan 2 x d x$
(29) $\int_{0}^{\pi / 8} \frac{\sec ^{2} 2 x}{\sqrt{1-\tan 2 x}} d x$
(30) $\int_{0}^{\pi / 3} \frac{\sin 3 x}{(1+\cos 3 x)^{2 / 3}} d x$
(31) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+3}}{9-x}$
(32) $\lim _{x \rightarrow 0} \frac{4 x+1-e^{2 x}}{4 e^{3 x}-4}$
(33) $\int_{-\infty}^{0} \frac{e^{3 x}}{\left(3-e^{3 x}\right)^{2}} d x$
(34) $\int_{0}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}\left(e^{\sqrt{x}}+1\right)^{2}} d x$
(35) $\int_{1}^{2} \frac{2 x+1}{\sqrt[4]{x^{2}+x-2}} d x$
(36) Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{5}{3}\right)^{n}$ converges or diverges. If the series converges, find its sum.
(37) Determine whether the series $\sum_{n=0}^{\infty} \frac{5}{3}\left(\frac{1}{2}\right)^{n}$ converges or diverges. If the series converges, find its sum.
(38) Determine whether the series $\sum_{n=0}^{\infty} 250(1.2)^{n}$ converges or diverges. If the series converges, find its sum.
(39) Determine whether the series $\sum_{n=1}^{\infty} 125(0.2)^{n}$ converges or diverges. If the series converges, find its sum.
(40) Determine whether the series $\sum_{n=1}^{\infty} \frac{4 n^{2}-n^{3}}{4-n^{2}}$ converges or diverges. If the series converges, find its sum.
(41) Determine whether the series $\sum_{n=1}^{\infty} \frac{(2+3 n)\left(4+n^{2}\right)}{\left(2+n^{2}\right)(1+n)}$ converges or diverges. If the series converges, find its sum.
(42) Determine whether the series $\sum_{n=1}^{\infty} 6\left(-\frac{2}{3}\right)^{n}$ converges or diverges. If the series converges, find its sum.
(43) Determine whether the series $\sum_{n=1}^{\infty} 20\left[\left(\frac{1}{4}\right)^{n}-\left(\frac{1}{5}\right)^{n}\right]$ converges or diverges.

If the series converges, find its sum.
(44) Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{4}\left(\frac{5}{2}\right)^{n}$ converges or diverges. If the series converges, find its sum.
(45) Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{9+n^{2}}}{n+1}$ converges or diverges. If the series converges, find its sum.
(46) Determine whether the series $\sum_{n=1}^{\infty} \frac{n+n^{3}}{3+n}$ converges or diverges.

If the series converges, find its sum.
(47) Determine whether the series $\sum_{n=1}^{\infty} \frac{5}{3^{n}}$ converges or diverges. If the series converges, find its sum.
(48) Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n+1}}$ converges or diverges. If the series converges, find its sum.
(49) Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{n+1}}{4^{n}}$ converges or diverges. If the series converges, find its sum.
(50) Determine whether the series $\sum_{n=1}^{\infty} 4 \frac{2^{n+1}}{3^{n}}$ converges or diverges. If the series converges, find its sum.
(51) Given a repeated decimal $4 . \overline{13}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(52) Given a repeated decimal $6 . \overline{04}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(53) Given a repeated decimal $3 . \overline{09}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(54) Given a repeated decimal $2 . \overline{02}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(55) Given a repeated decimal $5 . \overline{011}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(56) Given a repeated decimal $1 . \overline{06}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(57) Given a repeated decimal $2 . \overline{03}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(58) Given a repeated decimal $8 . \overline{01}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(59) Given a repeated decimal $2 . \overline{22}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(60) Given a repeated decimal $5 . \overline{25}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(61) A deposit of 35 dollars is made at the beginning of each month for 4 years into an account that pays 1.5% interest, compounded 12 times a year. Find the balance in the account at the end of the 4 years.
(62) The annual net profit for a company from 1998 to 2002 can be approximately by the model, $a_{n}=10 e^{0.2 n}, n=1,2,3, \ldots, N$ where a_{n} is the annual net profit in millions of dollars and n represents the year with $n=1$ corresponding to 1998.
Estimate the total net profit earned during this period.
(63) A deposit of 15 dollars is made at the beginning of each month for 5 years into an account that pays 0.9% interest, compounded 12 times a year. Find the balance in the account at the end of the 5 years.
(64) The annual net profit for a company from 1995 to 2000 can be approximately by the model, $a_{n}=5 e^{0.1 n}, n=1,2,3, \ldots, N$ where a_{n} is the annual net profit in millions of dollars and n represents the year with $n=1$ corresponding to 1995.
Estimate the total net profit earned during this period.
(65) A deposit of 20 dollars is made quarterly for 10 years into an account that pays 1% interest, compounded 4 times a year.
Find the balance in the account at the end of the 10 years.
(66) A deposit of $\$ 500$ can be made with two options: earns 2% interest, compounded monthly for 3 years or earns 1.5% interest, compounded quarterly for 3 years. Find the balance after 3 years of both options.
(67) A deposit of $\$ 1200$ can be made with two options: earns 1.6% interest, compounded bi-monthly for 5 years or earns 2.3% interest, compounded semi-annually for 5 years.
Find the balance after 5 years of both options.
(68) To create a scholarship of $\$ 600$ to be awarded every year, use the series $\sum 600 e^{-0.05 n}$ to determine the sum of money required to deposit at a rate of 5% interest per year compounded continuously. Find the sum.
(69) To create a scholarship of $\$ 2000$ to be awarded every year, use the series $\sum 2000 e^{-0.03 n}$ to determine the sum of money required to deposit at a rate of 3% interest per year compounded continuously. Find the sum.
(70) A patient is given 5 units of a drug daily for a long period of time. A portion of the drug remains in the patient's body after n years is given by $\sum 5 e^{-n / 2}$. Find the total amount of drug remaining in the patient's body after 4 years and also after 15 years.
(71) A deposit of 10 dollars is made at the beginning of each month for 6 years into an account that pays 1% interest, compounded 12 times a year. Find the balance in the account at the end of the 6 years.
(72) The annual net profit for a company from 1997 to 2003 can be approximately by the model, $a_{n}=15 e^{0.3 n}, n=1,2,3, \ldots, N$ where a_{n} is the annual net profit in millions of dollars and n represents the year with $n=1$ corresponding to 1997.
Estimate the total net profit earned during this period.
(73) A deposit of 30 dollars is made at the beginning of each month for 7 years into an account that pays 1.1% interest, compounded 12 times a year. Find the balance in the account at the end of the 7 years.
(74) The annual net profit for a company from 1996 to 2001 can be approximately by the model, $a_{n}=6 e^{0.05 n}, n=1,2,3, \ldots, N$ where a_{n} is the annual net profit in millions of dollars and n represents the year with $n=1$ corresponding to 1996.
Estimate the total net profit earned during this period.
(75) A deposit of 50 dollars is made bi-weekly for 8 years into an account that pays
1.3% interest, compounded every two weeks a year.
Find the balance in the account at the end of the 8 years.
(76) A deposit of $\$ 700$ can be made with two options: earns 1.8% interest, compounded bi-weekly for 4 years or earns 2.1% interest, compounded monthly for 4 years. Find the balance after 4 years of both options.
(77) A deposit of $\$ 1500$ can be made with two options: earns 1.4% interest, compounded quarterly for 6 years or earns 1.9% interest, compounded monthly for 6 years.
Find the balance after 6 years of both options.
(78) To create a scholarship of $\$ 750$ to be awarded every year, use the series $\sum 750 e^{-0.04 n}$ to determine the sum of money required to deposit at a rate of 4% interest per year compounded continuously. Find the sum.
(79) To create a scholarship of $\$ 1500$ to be awarded every year, use the series $\sum 1500 e^{-0.035 n}$ to determine the sum of money required to deposit at a rate of 3.5% interest per year compounded continuously. Find the sum.
(80) A patient is given 4 units of a drug daily for a long period of time. A portion of the drug remains in the patient's body after n years is given by $\sum 4 e^{-n / 5}$. Find the total amount of drug remaining in the patient's body after 6 years and also after 20 years.
(81) $\lim _{x \rightarrow 0} \frac{x^{2}-e^{2 x}+\cos x}{3 x^{2}+\sin (3 x)}$
(82) $\int_{0}^{\infty} \frac{4 x}{\left(x^{2}+1\right)^{4}} d x$
(83) $\int_{1}^{4} \frac{3 x}{\left(1-x^{2}\right)^{2}} d x$
(84) $\int_{-2}^{0} \frac{6 x}{\sqrt{4-x^{2}}} d x$
(85) $\lim _{x \rightarrow \pi} \frac{\sin x-\tan x}{\cos x-\sin x+1}$
(86) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}+4 x+4}{x^{3}+3 x^{2}+6 x+4}$
(87) $\lim _{x \rightarrow-\infty} \frac{4 x^{2}-e^{3 x}}{e^{2 x}+3 x^{2}}$
(88) $\lim _{x \rightarrow \infty} \frac{(2 x-1)^{3}}{(4 x+1)^{3}}$
(89) $\int_{2}^{+\infty} \frac{4 d x}{x(\ln x)^{2}}$
(90) $\int_{0}^{\pi / 6} \frac{3 \cos x}{(2 \sin x)^{1 / 3}} d x$
(91) Determine whether the sequence $a_{n}=\frac{\sqrt{9 n^{2}+2}}{2 n+5}$ converges or diverges. If the sequence converges, find its limit.
(92) Determine whether the sequence $a_{n}=\frac{4(n-1)!}{3 n!}$ converges or diverges. If the sequence converges, find its limit.
(93) Determine whether the sequence $\left\{\frac{1}{2} \cdot 5^{n+1}\right\}_{n=2}^{+\infty}$ converges or diverges. If the sequence converges, find its limit.
(94) Determine whether the sequence $a_{n}=4\left(\frac{1}{3}\right)^{n-1} \quad$ converges or diverges. If the sequence converges, find its limit.
(95) Determine whether the sequence $\left\{\frac{4 n+5}{2^{n-1}}\right\}_{n=1}^{+\infty}$ converges or diverges. If the sequence converges, find its limit.
(96) Determine whether the sequence $a_{n}=\frac{5+n}{\sqrt{3+4 n^{2}}}$ converges or diverges. If the sequence converges, find its limit.
(97) Given a repeated decimal $10.2 \overline{3}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(98) Given a repeated decimal $7.3 \overline{4}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(99) Given a repeated decimal $12.30 \overline{2}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.
(100) Given a repeated decimal $20.0 \overline{21}$, express it as a geometric series, find the sum of the geometric series and write the decimal as the ratio of two integers.

