Definition of a Sequence

A sequence is a function represented by $\{a_n\}$

where the domain is the variable n with positive integers.

The function values: $a_1, a_2, a_3, \ldots, a_n, \ldots$ are the terms of the sequence.

A finite sequence has a defined number of terms.

Ex: 2, 6, 10, 14 this sequence is finite with 4 terms.

An infinite sequence has an undefined number of terms.

Ex: $2, 6, 10, 14, \ldots$ this sequence is infinite.

Often a pattern exists in a given sequence that will help to determine an expression called the n^{th} term, also called the general term of the sequence. In the above example, the n^{th} term is written as $a_n = 4n - 2$.

Once you have a_n ; verify as follows:

first term: $a_1 = 4(1) - 2 = 2$; second term: $a_2 = 4(2) - 2 = 6$ third term: $a_3 = 4(3) - 2 = 10$; fourth term: $a_4 = 4(4) - 2 = 14$

Example 1: Given the n^{th} term of a sequence, write the first 5 terms and show the result graphically:

 $a_n = \frac{n-2}{n^2} \longrightarrow a_1 = -1, a_2 = 0, a_3 = \frac{1}{9}, a_4 = \frac{1}{8}, a_5 = \frac{3}{25}$

 $\overrightarrow{5}$ \overrightarrow{n}

Example 2: Given the n^{th} term of a sequence, write the first 5 terms and show the result graphically:

$$a_{n} = \frac{n^{2} + 1}{2n} \longrightarrow a_{1} = 1, a_{2} = \frac{5}{4}, a_{3} = \frac{10}{6}, a_{4} = \frac{17}{8}, a_{5} = \frac{26}{10}$$
the first 5 terms are: $\{1, \frac{5}{4}, \frac{5}{3}, \frac{17}{8}, \frac{13}{5}, \dots\}$
in decimals: $\{1, 1.25, 1.6667, 2.125, 2.6\}$
The points (n, a_{n}) shown on the graph are the coordinates of these 5 terms:
 $(1, 1) ; (2, 1.25) ; (3, 1.6667) ; (4, 2.125) ; (5, 2.6)$
 $a_{n} = \frac{1}{2}$
 $a_{n} = \frac{1}{10}$
 $a_{n} = \frac{$

Example 3: Given the n^{th} term of a sequence, write the first 5 terms and show the result graphically:

 a_n

$$a_n = \frac{5-n}{n+1} \longrightarrow a_1 = 2, a_2 = 1, a_3 = \frac{2}{4}, a_4 = \frac{1}{5}, a_5 = 0$$

 $2 - \frac{1}{2}$ 0 the first 5 terms are: $\{2, 1, \frac{1}{2}, \frac{1}{5}, 0, \dots\}$ in decimals: $\{2, 1, 0.5, 0.2, 0\}$ 1 0 The points (n, a_n) shown on the graph are the coordinates of these 5 terms: 0 (1,2); (2,1); (3,0.5); (4,0.2); (5,0)0 4 2 3 0 1

Example 4: Given the n^{th} term of a sequence, write the first 5 terms and show the result graphically:

 $a_n = (-1)^n \cdot n! \longrightarrow n!$ reads n factorial [abbreviation of 1.2.3.4...(n-1).n] $a_1 = (-1) \cdot 1! = -1, a_2 = (1) \cdot 2! = 2, a_3 = (-1) \cdot 3! = -6, a_4 = (1) \cdot 4! = 24, a_5 = (-1) \cdot 5! = -120$

Example 5: Given the n^{th} term of a sequence, write the first 5 terms.

Let $f(x) = e^{x/4}$ and $a_n = f^{(n-1)}(0)$ [$f^{(5)}(0)$ means the fifth derivative of f(x) at x = 0] $f^{(0)}(x) = f(x) \to a_1 = f(0) = e^0 = 1$ $f^{(1)}(x) = f'(x) \to a_2 = f'(0) = \frac{1}{4}e^0 = \frac{1}{4}$ $f^{(2)}(x) = f''(x) \to a_3 = f''(0) = \frac{1}{16}e^0 = \frac{1}{16}$ $f^{(3)}(x) \to a_4 = f^{(3)}(0) = \frac{1}{64}e^0 = \frac{1}{64}$ $f^{(4)}(x) \to a_5 = f^{(4)}(0) = \frac{1}{256}e^0 = \frac{1}{256}$

the first 5 terms are: $\left\{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \ldots\right\}$

Example 6: Given the n^{th} term of a sequence, write the first 5 terms.

Let $f(x) = \sin(3x)$ and $a_n = f^{(n-1)}(0)$ [$f^{(7)}(0)$ means the seventh derivative of f(x) at x = 0] $f^{(0)}(x) = f(x) \to a_1 = f(0) = \sin(0) = 0$ $f^{(1)}(x) = f'(x) \to a_2 = f'(0) = 3 \cos(0) = 3$ $f^{(2)}(x) = f''(x) \to a_3 = f''(0) = -9 \sin(0) = 0$ $f^{(3)}(x) \to a_4 = f^{(3)}(0) = -27 \cos(0) = -27$ $f^{(4)}(x) \to a_5 = f^{(4)}(0) = 81 \sin(0) = 0$

the first 5 terms are: $\{0, 3, 0, -27, 0, ...\}$

General Term of a Sequence

Given the terms of 5 sequences, find the general term of each sequence:

Look for a pattern of the terms in each sequence, then verify the answers.

 $\begin{array}{ll} (1) & \frac{1}{3}, \frac{3}{6}, \frac{5}{9}, \frac{7}{12}, \frac{9}{15}, \dots & a_n = \frac{2n-1}{3n} \\ (2) & \frac{5}{1}, \frac{7}{4}, \frac{9}{9}, \frac{11}{16}, \frac{13}{25}, \dots & a_n = \frac{2n+3}{n^2} \\ (3) & \frac{2}{1}, \frac{3}{3}, \frac{4}{5}, \frac{5}{7}, \frac{6}{9}, \dots & a_n = \frac{n+1}{2n-1} \\ (4) & -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \dots & a_n = \frac{\cos(\pi n)}{n} \\ (5) & \frac{e}{2}, \frac{e^2}{3}, \frac{e^3}{4}, \frac{e^4}{5}, \frac{e^5}{6}, \dots & a_n = \frac{e^n}{n+1} \end{array}$

Some general term may have more than one answer.

Application of Sequence (1)

\$5000 is invested at 3% compounded monthly.

Use the n^{th} term $a_n = P\left[1 + \frac{i}{m}\right]^n$ where P is the amount invested, i is the interest in decimal, m number of compound intervals per year t time in years $n = m \cdot t$ total number of compound intervals. Find a sequence of the monthly balances for a period of one year.

replacing P with 5000, *i* with 0.03, *m* with 12; we get: $a_n = 5000 \left(1 + \frac{0.03}{12}\right)^n = 5000(1.0025)^n$ we write the first 12 terms:

 $a_1 = 5000(1.0025)^1 = 5012.50$; $a_2 = 5000(1.0025)^2 = 5025.03$; $a_3 = 5000(1.0025)^3 = 5037.59$

 $a_4 = 5000(1.0025)^4 = 5050.19$; $a_5 = 5000(1.0025)^5 = 5062.81$; $a_6 = 5000(1.0025)^6 = 5075.47$

 $a_7 = 5000(1.0025)^7 = 5088.16$; $a_8 = 5000(1.0025)^8 = 5100.88$; $a_9 = 5000(1.0025)^9 = 5113.63$

 $a_{10} = 5000(1.0025)^{10} = 5126.42 \ ; \ a_{11} = 5000(1.0025)^{11} = 5139.23 \ ; \ a_{12} = 5000(1.0025)^{12} = 5152.08$

Definition of an Arithmetic Sequence

An Arithmetic Sequence is a sequence such that the difference d between two consecutive terms is constant. Therefore $a_2 - a_1 = d$; $a_7 - a_6 = d$ and so on. The n^{th} term of an arithmetic sequence is $a_n = a_1 + (n-1)d$

Example 7: Given the arithmetic sequence: $6, 4, 2, 0, -2, \ldots$

find d, a_n , a_{50} and which term equals -40?

difference: $d = a_2 - a_1 = 4 - 6 = -2$ same as $a_5 - a_4 = -2 - 0 = -2$ therefore d = -2

 $a_n = a_1 + (n-1)d = 6 + (n-1)(-2) = 8 - 2n$ therefore $a_n = 8 - 2n$

 $a_{50} = 8 - 2(50) = -92$ the fiftieth term equals to -92

 $a_n = 8 - 2n = -40 \rightarrow 8 + 40 = 2n \rightarrow n = 24$

The twenty-fourth term equals to -40

Example 8: Given the arithmetic sequence: $11, 15, 19, 23, 27, \ldots$

find d, a_n , a_{75} and which term equals 91?

difference: $d = a_2 - a_1 = 15 - 11 = 4$ same as $a_5 - a_4 = 27 - 23 = 4$ therefore d = 4

 $a_n = a_1 + (n-1)d = 11 + (n-1)(4) = 4n + 7$ therefore $a_n = 4n + 7$

 $a_{75} = 4(75) + 7 = 307$ the seventy-fifth term equals to 307

 $a_n = 4n + 7 = 91 \rightarrow 4n = 91 - 7 \rightarrow n = 21$

The twenty-first term equals to 91

Example 9: Given the arithmetic sequence: $\frac{1}{3}, \frac{5}{6}, \frac{4}{3}, \frac{11}{6}, \frac{7}{3}, \dots$ find d, a_n, a_{30} and which term equals $\frac{19}{3}$? difference: $d = a_2 - a_1 = \frac{5}{6} - \frac{1}{3} = \frac{1}{2}$ same as $a_5 - a_4 = \frac{7}{3} - \frac{11}{6} = \frac{1}{2}$ therefore $d = \frac{1}{2}$ $a_n = a_1 + (n-1)d = \frac{1}{3} + (n-1)(\frac{1}{2}) = \frac{1}{2}n - \frac{1}{6}$ therefore $a_n = \frac{3n-1}{6}$ $a_{30} = \frac{3(30)-1}{6} = \frac{89}{6}$ the thirtieth term equals to $\frac{89}{6}$ $a_n = \frac{3n-1}{6} = \frac{19}{3} \to 3n - 1 = 38 \to n = 13$ The thirteenth term equals to $\frac{19}{3}$

Example 10: Given the arithmetic sequence: $\frac{2}{5}$, $\frac{1}{5}$, 0, $-\frac{1}{5}$, $-\frac{2}{5}$, ... find d, a_n , a_{43} and which term equals -9?

difference: $d = a_2 - a_1 = \frac{1}{5} - \frac{2}{5} = -\frac{1}{5}$ same as $a_5 - a_4 = -\frac{2}{5} - \left(-\frac{1}{5}\right) = -\frac{1}{5}$ therefore $d = -\frac{1}{5}$ $a_n = a_1 + (n-1)d = \frac{2}{5} + (n-1)\left(-\frac{1}{5}\right) = -\frac{1}{5}n + \frac{3}{5}$ therefore $a_n = \frac{3-n}{5}$ $a_{43} = \frac{3-43}{5} = -8$ the forty-third term equals to -8 $a_n = \frac{3-n}{5} = -9 \to 3 - n = -45 \to n = 48$

The forty-eighth term equals to -9

Example 11: Given the arithmetic sequence: $5, 20, 35, 50, 65, \ldots$

find d, a_n , a_{55} and which term equals 230?

difference: $d = a_2 - a_1 = 20 - 5 = 15$ same as $a_5 - a_4 = 65 - 50 = 15$ therefore d = 15

 $a_n = a_1 + (n-1)d = 5 + (n-1)(15) = 15n - 10$ therefore $a_n = 15n - 10$

 $a_{55} = 15(55) - 10 = 815$ the fifty-fifth term equals to 815

 $a_n = 15n - 10 = 230 \rightarrow 15n = 240 \rightarrow n = 16$

The sixteenth term equals to 230

Definition of a Geometric Sequence

A Geometric Sequence is a sequence such that the ratio r among two consecutive terms is constant.

Therefore $\frac{a_2}{a_1} = r$; $\frac{a_9}{a_8} = r$ and so on. The n^{th} term of a geometric sequence is $a_n = a_1 \cdot (r)^{n-1}$

Example 12: Given the geometric sequence: 120, 60, 30, 15, $\frac{15}{2}$, ... find r, a_n , a_{10} and which term equals $\frac{15}{32}$? ratio: $r = \frac{a_2}{a_1} = \frac{60}{120} = \frac{1}{2}$ same as $\frac{a_5}{a_4} = \frac{\frac{15}{2}}{15} = \frac{1}{2}$ therefore $r = \frac{1}{2}$ $a_n = a_1 \cdot (r)^{n-1} = 120 \cdot \left(\frac{1}{2}\right)^{n-1}$ therefore $a_n = 120 \left(\frac{1}{2}\right)^{n-1}$ $a_{10} = 120 \left(\frac{1}{2}\right)^{10-1} = \frac{15}{64}$ the tenth term equals to $\frac{15}{64}$ $a_n = 120 \left(\frac{1}{2}\right)^{n-1} = \frac{15}{32} \rightarrow \left(\frac{1}{2}\right)^{n-1} = \frac{1}{256} = \left(\frac{1}{2}\right)^{9-1} \rightarrow n = 9$

The ninth term equals to $\frac{15}{32}$

Example 13: Given the geometric sequence: 50, 150, 450, 1350, 4050, \ldots find r, a_n , a_9 .

ratio:
$$r = \frac{a_2}{a_1} = \frac{150}{50} = 3$$
 same as $\frac{a_5}{a_4} = \frac{4050}{1350} = 3$ therefore $r = 3$
 $a_n = a_1 \cdot (r)^{n-1} = 50 \cdot (3)^{n-1}$ therefore $a_n = 50 \cdot (3)^{n-1}$

 $a_9 = 50 (3)^{9-1} = 328050$ the ninth term equals to 328050

Example 14: Given the geometric sequence: $-8, 4, -2, 1, -\frac{1}{2}, \ldots$ find r, a_n, a_{11} .

ratio: $r = \frac{a_2}{a_1} = \frac{4}{-8} = -\frac{1}{2}$ same as $\frac{a_5}{a_4} = \frac{-\frac{1}{2}}{1} = -\frac{1}{2}$ therefore $r = -\frac{1}{2}$ $a_n = a_1 \cdot (r)^{n-1} = -8 \cdot \left(-\frac{1}{2}\right)^{n-1}$ therefore $a_n = -8 \left(-\frac{1}{2}\right)^{n-1}$ $a_{11} = -8 \left(-\frac{1}{2}\right)^{11-1} = -\frac{1}{128}$ the eleventh term equals to $-\frac{1}{128}$

Example 15: Given the geometric sequence: $17, -34, 68, -136, 272, \dots$ find r, a_n, a_8 .

ratio: $r = \frac{a_2}{a_1} = \frac{-34}{17} = -2$ same as $\frac{a_5}{a_4} = \frac{272}{-136} = -2$ therefore r = -2 $a_n = a_1 \cdot (r)^{n-1} = 17 \cdot (-2)^{n-1}$ therefore $a_n = 17 \ (-2)^{n-1}$

 $a_8 = 17 (-2)^{8-1} = -2176$ the eighth term equals to -2176

Example 16: Given the geometric sequence: $22, 66, 198, 594, 1782, \ldots$

find r, a_n , a_{12} and which term equals 48114?

ratio: $r = \frac{a_2}{a_1} = \frac{66}{22} = 3$ same as $\frac{a_5}{a_4} = \frac{1782}{594} = 3$ therefore r = 3

 $a_n = a_1 \cdot (r)^{n-1} = 22 \cdot (3)^{n-1}$ therefore $a_n = 22 (3)^{n-1}$

 $a_{12} = 22 (3)^{12-1} = 3897234$ the twelfth term equals to 3897234

$$a_n = 22 \ (3)^{n-1} = 48114 \rightarrow (3)^{n-1} = 2187 = (3)^{8-1} \rightarrow n = 8$$

The eighth term equals to 48114

Identify Types of Sequence

Given 5 sequences, identify which sequence is arithmetic, geometric or neither:

Look for a pattern of the terms in each sequence, then verify the answers.

- (1) $18, 16, 14, 12, 10, \ldots$ arithmetic with d = -2
- (2) $18, 9, \frac{9}{2}, \frac{9}{4}, \frac{9}{8}, \dots$ geometric with $r = \frac{1}{2}$
- (3) $18, -18, 18, -18, 18, \ldots$ geometric with r = -1
- $(4) \quad 18\,,\,10\,,\,22\,,\,6\,,\,30\,,\,\dots \qquad \text{neither}$
- (5) $18, 20, 22, 24, 26, \ldots$ arithmetic with d = 2

Application of Sequence (2)

An employee has an initial salary of \$28000. The salary increases 3% per year.

Use the n^{th} term $a_n = P [1+i]^n$ where P is the initial salary, i is the rate of increase in decimal, n is yearly term.

Find a sequence of the first 3 years salaries.

replacing *P* with 28000, *i* with 0.03; we get: $a_n = 28000 (1.03)^n$

write the first 3 terms:

 $a_1 = 28000(1.03)^1 = 28840.00$; $a_2 = 28000(1.03)^2 = 29705.20$; $a_3 = 28000(1.03)^3 = 30596.36$

Limit of a Sequence

Given a sequence with the n^{th} term, find if the sequence converges or diverges.

To do it, need to evaluate $\lim_{n \to \infty} a_n$

it is convergent if the result is a real number;

it is divergent if the result is undefined.

The limit of a sequence can also be verified graphically (not always reliable).

Note: If the result of the limit is indeterminate, may use L'Hôpital's Rule to remove the indeterminate form.

Examples of Limit of a Sequence

In Example 1: $\lim_{n \to \infty} \frac{n-2}{n^2} = \frac{\infty}{\infty} \longrightarrow$ use L'Hôpital's Rule: $\lim_{n \to \infty} \frac{1}{2n} = \frac{1}{\infty} = 0$ OR

010

$$\lim_{n \to \infty} \frac{\frac{n}{n^2} - \frac{2}{n^2}}{\frac{n}{n^2}} = \lim_{n \to \infty} \frac{\frac{1}{n} - \frac{2}{n^2}}{1} = \frac{0 - 0}{1} = 0$$

the sequence converges; verify the graph shown in Example 1.

In Example 2: $\lim_{n \to \infty} \frac{n^2 + 1}{2n} = \frac{\infty}{\infty} \longrightarrow$ use L'Hôpital's Rule: $\lim_{n \to \infty} \frac{2n}{2} = \lim_{n \to \infty} n = \infty$

OR

$$\lim_{n \to \infty} \frac{\frac{n^2}{n^2} + \frac{1}{n^2}}{2\frac{n}{n^2}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n^2}}{2\frac{1}{n}} = \frac{1 - 0}{0} = \text{undefined}$$

the sequence diverges; verify the graph shown in Example 2.

In Example 3:
$$\lim_{n \to \infty} \frac{5-n}{n+1} = \frac{-\infty}{\infty} \longrightarrow$$
 use L'Hôpital's Rule: $\lim_{n \to \infty} \frac{-1}{1} = -1$

OR

$$\lim_{n \to \infty} \frac{\frac{5}{n} - \frac{n}{n}}{\frac{n}{n} + \frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{5}{n} - 1}{1 + \frac{1}{n}} = \frac{0 - 1}{1 + 0} = -1$$

the sequence converges; when you verify the graph shown in Example 3 (it is not reliable).

In Example 4: $\lim_{n \to \infty} (-1)^n \cdot n! = \pm 1 \lim_{n \to \infty} \left[n(n-1)(n-2)(n-3) \dots 3 \cdot 2 \cdot 1 \right] = \pm \infty;$ the sequence diverges.

In Example 5: the sequence: $\left\{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \ldots\right\}$ the general term $a_n = \frac{1}{4^{n-1}}$

geometric sequence with $r = \frac{1}{4}$; -1 < r < 1; $\lim_{n \to \infty} \frac{1}{4^{n-1}} = 0$; the sequence converges.

In Example 6: the sequence: $\{0, 3, 0, -27, 0, ...\}$

the terms show oscillating since the negative sign alternates and the absolute value increases. The sequence diverges.

Definition of a Series

A series is the sum of all terms of a sequence $\{a_n\}$

Example: Given a finite sequence: 4, 7, 11, 16, 22, 31 find the series.

The series is 4+7+11+16+22+31 the sum of the six terms of the sequence.

The sum S of the series is 91.

<u>Notation</u>: A finite series is written as $\sum_{k=1}^{N} a_k$ in the above example, it is written as $\sum_{k=1}^{6} a_k$

It is called the sigma notation.

An infinite series is written as $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + a_4 + \dots$

Sequence of a Partial Sums of an Infinite Series

Given an infinite series $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + a_4 + \dots$

the partial sums of the series is defined by:

$$S_1 = a_1$$
; $S_2 = a_1 + a_2 = S_1 + a_2$; $S_3 = a_1 + a_2 + a_3 = S_2 + a_3$

 $S_4 = a_1 + a_2 + a_3 + a_4 = S_3 + a_4$; $S_5 = a_1 + a_2 + a_3 + a_4 + a_5 = S_4 + a_5$ and so on.

An infinite sequence $\{S_n\}$ of partial sums of the series is written as $S_1, S_2, S_3, S_4, S_5, \ldots, S_n$

where $S_n = \sum_{k=1}^n a_k$ is the general term of the sequence.

Convergence & Divergence of an Infinite Series

Given an infinite series $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + a_4 + \dots$ and the sequence of the partial sums $\{S_n\}$, then the infinite series <u>converges</u> to a real number if $\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n$ = a real number (sum of the series). If $\lim_{n \to \infty} S_n$ = does not exist, then the series <u>diverges</u>.

Note: This method does not always work since it is hard to find the general term S_n .

The way to proceed is to find a pattern in the partial sums and make an estimate of the sum of the series; the series is convergent.

If the estimate can't be done, then no sum exists for the series; the series is divergent.

Example 17: Given an infinite series
$$\sum_{n=1}^{\infty} 4^n = 4 + 16 + 64 + 256 + 1024 + \dots$$

Determine if the series is convergent or divergent.

The sequence of partial sums $\{S_n\}$ are:

 $S_1 = 4, S_2 = 20, S_3 = 84, S_4 = 340, S_5 = 1364$

the pattern in the partial sums clearly shows that the values increase, then no sum exists for the series; conclusion: the series is divergent.

Example 18: Given an infinite series
$$\sum_{n=1}^{\infty} \frac{5}{2^n} = \frac{5}{2^1} + \frac{5}{2^2} + \frac{5}{2^3} + \frac{5}{2^4} + \frac{5}{2^5} + \dots$$

Determine if the series is convergent or divergent.

The sequence of partial sums $\{S_n\}$ are:

$$S_{1} = \frac{5}{2^{1}} = 2.5 \quad ; \quad S_{2} = \frac{5}{2^{1}} + \frac{5}{2^{2}} = \frac{15}{4} = 3.75 \quad ; \quad S_{3} = \frac{5}{2^{1}} + \frac{5}{2^{2}} + \frac{5}{2^{3}} = \frac{35}{8} = 4.375$$
$$S_{4} = \frac{5}{2^{1}} + \frac{5}{2^{2}} + \frac{5}{2^{3}} + \frac{5}{2^{4}} = \frac{75}{16} = 4.6875 \quad ; \quad S_{5} = \frac{5}{2^{1}} + \frac{5}{2^{2}} + \frac{5}{2^{3}} + \frac{5}{2^{4}} + \frac{5}{2^{5}} = \frac{155}{32} = 4.84375$$

the pattern in the partial sums clearly shows that the values tend toward the number 5, then the sum exists for the series; conclusion: the series is convergent.

Properties of Infinite Properties

Given two convergent series $\sum_{n=1}^{\infty} a_n = N_a$ and $\sum_{n=1}^{\infty} b_n = N_b$ with c a real number,

then the following properties are valid:

$$\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n = c N_a$$
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = N_a + N_b$$

$n^{\rm th}$ term test for Divergence

If an infinite series $\sum_{n=1}^{\infty} a_n$ has $\lim_{n \to \infty} a_n \neq 0$ then the series is divergent.

<u>Note:</u> This test does not imply that if $\lim_{n\to\infty} a_n = 0$, the series is necessarily convergent. Another test must be used to confirm convergence or divergence.

<u>Example 19:</u> Given an infinite series $\sum_{n=1}^{\infty} \frac{3-n}{2n+5}$; test the series for divergence.

Use the n^{th} term test for Divergence: $\lim_{n \to \infty} \frac{3-n}{2n+5} = \frac{-\infty}{\infty}$

<u>Note:</u> Sometimes use L'Hôpital's Rule to evaluate indeterminate forms only like $\frac{0}{0}$ or $\frac{\infty}{\infty}$

using L'Hôpital's Rule: $\lim_{n \to \infty} \frac{3-n}{2n+5} = \lim_{n \to \infty} \frac{-1}{2} = -\frac{1}{2} \neq 0$; conclusion: the series is divergent.

Example 20: Given an infinite series $\sum_{n=1}^{\infty} \frac{6}{5^n}$; test the series for divergence. Use the n^{th} term test for Divergence: $\lim_{n \to \infty} \frac{6}{5^n} = 0$; conclusion: the test fails.

Note: Another test must be made to confirm the convergence or divergence of the series. (shown later)

Definition of an Arithmetic Series

An infinite arithmetic series is written as:

$$\sum_{n=1}^{\infty} \left[a_1 + (n-1)d \right] = a_1 + (a_1 + 1d) + (a_1 + 2d) + (a_1 + 3d) + \dots + (a_1 + nd) + \dots$$

where $a_n = a_1 + (n-1)d$ with difference d as defined for arithmetic sequence.

The sum of *n* terms of an arithmetic series: $S_n = \frac{n}{2} (a_1 + a_n)$

An infinite arithmetic series $\sum_{n=1}^{\infty} [a_1 + (n-1)d]$ always diverges

Example 21: Given an arithmetic general term an = 3n - 7; find the sum of the first 40 terms.

use
$$S_n = \frac{n}{2} (a_1 + a_n)$$
; need $a_1 = 3(1) - 7 = -4$ and $a_{40} = 3(40) - 7 = 113$
40

the sum of the first 40 terms: $S_{40} = \frac{40}{2} (-7 + 113) = 2180$

Definition of a Geometric Series

An infinite geometric series is written as:
$$\sum_{n=0}^{\infty} a \cdot r^n = a + ar + ar^2 + ar^3 + \dots + ar^n + \dots$$

where $a_n = a_1 \cdot r^{n-1}$ with ratio r as defined for geometric sequence.

Note: summation notation starts at n = 0

The Nth partial sum of the geometric series is $S_N = \frac{a(1-r^{N+1})}{1-r}$ with $r \neq 1$

An infinite geometric series $\sum_{n=0}^{\infty} a \cdot r^n$ diverges if $|r| \ge 1$ meaning $r \le -1$ or $r \ge 1$

An infinite geometric series $\sum_{n=0}^{\infty} a \cdot r^n$ converges if |r| < 1 meaning -1 < r < 1 and

the sum of $\sum_{n=0}^{\infty} a \cdot r^n = S_{\infty} = \frac{a}{1-r}$

Example 22: Find the fourth and seventh partial sum of the geometric series $\sum_{n=0}^{\infty} \frac{7}{2^n}$

Use first term (n = 0) a = 7, $r = \frac{1}{2}$ in the formula: $S_N = \frac{a(1 - r^{N+1})}{1 - r}$

Fourth partial sum: $S_4 = \frac{7\left(1 - \left(\frac{1}{2}\right)^5\right)}{1 - \frac{1}{2}} = \frac{217}{16} \approx 13.6$

Seventh partial sum: $S_7 = \frac{7\left(1 - \left(\frac{1}{2}\right)^8\right)}{1 - \frac{1}{2}} = \frac{1785}{128} \approx 13.9453$

Example 23: In Example 20, the infinite series $\sum_{n=1}^{\infty} \frac{6}{5^n}$; failed the n^{th} term test for Divergence

Notice that the series is geometric with $\sum_{n=0}^{\infty} \frac{6}{5^{n+1}}$ first term $a = \frac{6}{5}$ and ratio $r = \frac{1}{5}$

since -1 < r < 1; series is convergent and sum is $S_{\infty} = \frac{a}{1-r} = \frac{\frac{6}{5}}{1-\frac{1}{5}} = \frac{3}{2}$

Example 24: Verify if the geometric series $\sum_{n=0}^{\infty} 2 (0.3)^n$ converges, if it does, find the sum.

Use first term $~(n=0)~~a=2\;,~r=0.3\rightarrow |r|<1\;$ then series converges and

the formula for the sum is $S_{\infty} = \frac{a}{1-r} = \frac{2}{1-0.3} = \frac{20}{7} \approx 2.86$

<u>Example 25:</u> Verify if the geometric series $\sum_{n=0}^{\infty} 2\left(\frac{5}{3}\right)^n$ converges, if it does, find the sum.

Use first term (n = 0) a = 2, $r = \frac{5}{3} \rightarrow |r| > 1$ then the geometric series diverges and no sum exists.

Example 26:

Given the repeated decimal $0.\overline{8}$, express it as a geometric series. Find the sum and write the decimal as the ratio of two integers.

Write $0.\overline{8} = 0.8 + 0.08 + 0.008 + \dots = \sum_{n=0}^{\infty} 0.8 (0.1)^n$

Use first term $~(n=0)~~a=0.8\;,~r=0.1\rightarrow |r|<1\;$ then series converges and

the formula for the sum is $S_{\infty} = \frac{a}{1-r} = \frac{0.8}{1-0.1} = \frac{8}{9}$

Example 27:

Given the repeated decimal $2.\overline{01}$, express it as a geometric series. Find the sum and write the decimal as the ratio of two integers.

Write
$$2.\overline{01} = 2 + 0.01 + 0.0001 + 0.000001 + \dots = 2 + \sum_{n=0}^{\infty} 0.01 (0.01)^n = 2 + \sum_{n=0}^{\infty} (0.01)^{n+1}$$

Use first term (n = 0) a = 0.01, $r = 0.01 \rightarrow |r| < 1$ then series converges and

the formula for the sum is $S_{\infty} = \frac{a}{1-r}$; therefore the sum is $2 + \frac{0.01}{1-0.01} = 2 + \frac{1}{99} = \frac{199}{99}$

Example 28: Given a geometric general term $a_n = \frac{3}{2^n}$; find the sum of the first 10 terms.

use $\sum_{n=0}^{9} \frac{3}{2^n} \to$ need first term (n=0) a=3, $r=\frac{1}{2}$ in the formula: $S_N = \frac{a(1-r^{N+1})}{1-r}$

the sum of the first 10 terms: $S_9 = \frac{3\left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}} = \frac{3069}{512} \approx 2.997$

Annuity

A deposit P in dollars is made m times a year for a number of years that pays i% compounded m times a year. Find the balance in the account at the end of t number of years.

Use the formula
$$A_n = P\left(1 + \frac{i}{m}\right)^n$$

where P is the amount deposited in dollars.

t is the number of years.

i is annual interest rate in decimal form.

m is the number of times per year.

 $n = m \cdot t$ is the total number of times for the duration.

 A_n is the general term of the sequence.

Example 29:

A deposit of \$25 is made monthly for 4 years that pays 3% compounded monthly. Find the balance in the account at the end of 4 years.

Use P = 25, m = 12, i = 0.03, t = 4, n = (12)(4) = 48 and we get the sum: $\sum_{k=1}^{n} P\left(1 + \frac{i}{m}\right)^{k}$ $S_{48} = \sum_{l=1}^{48} 25 \left(1 + \frac{0.03}{12}\right)^{k} = \sum_{l=1}^{48} 25 (1.0025)^{k}$

The N^{th} partial sum formula starts at n = 0 so do the following adjustments:

$$S_{48} = \sum_{k=1}^{48} 25 (1.0025)^k = -25 + \sum_{k=0}^{48} 25 (1.0025)^k \text{ with ratio } r = 1.0025$$

Use the Nth partial sum formula of geometric series: $S_N = \frac{a(1-r^{N+1})}{1-r}$

$$S_{48} = -25 + \frac{25\left(1 - (1.0025)^{49}\right)}{1 - 1.0025} \approx \$1276.46$$

Applications of Sequences and Series: Annuities

1. A deposit of 40 dollars is made at the beginning of each week for 3 years into an account that pays 1.05% interest, compounded weekly a year.

Find the balance in the account at the end of the 3 years.

$$-40 + \sum_{n=0}^{150} 40 \left(1 + \frac{0.0105}{52}\right)^n \approx \$6339.95 \ ; \ r = 1.0020193861$$

2. A deposit of \$300 is made that earns 3% interest, compounded monthly. Find a sequence that represents the monthly balances. Write the general term and find the first 5 terms of the sequence. $A_n = P\left(1 + \frac{i}{12}\right)^n \implies A_1 = 300\left(1 + \frac{0.03}{12}\right)^1 = 300(1.0025)^1 = 300.75$ $A_2 = 301.50$; $A_3 = 302.26$; $A_4 = 303.01$; $A_5 = 303.77$

3. A deposit of \$300 is made that earns 3% interest, compounded bi-weekly. Find a sequence that represents the bi-weekly balances. Write the general term and find the first 5 terms of the sequence. $A_n = P\left(1 + \frac{i}{26}\right)^n \implies A_1 = 300\left(1 + \frac{0.03}{26}\right)^1 = 300(1.00115384) = 300.35$ $A_2 = 300.69 ; A_3 = 301.04 ; A_4 = 301.39 ; A_5 = 301.73$

4. To create a scholarship of \$1000 to be awarded every year, use the series $\sum 1000 e^{-0.08n}$ to determine the sum of money required to deposit at a rate of 8% interest per year compounded continuously. Find the sum.

G.S.:
$$a_1 = 1000 e^{-0.08} \approx 923.1163$$
; $r = e^{-0.08} \approx 0.9231163 \implies \sum_{n=1}^{\infty} 1000 e^{-0.08n} \approx \12006.67

5. A patient is given 7 units of a drug daily for a long period of time. A portion of the drug remains in the patient's body after n years is given by $\sum 7 e^{-n/3}$. Find the total amount of drug remaining in the patient's body after 5 years, 10 years and many years later. G.S.: $a_1 = 7 e^{-1/3} \approx 5.015719468$; $r = e^{-1/3} \approx 0.71653131$

$$S_5 = \frac{7 e^{-1/3} \left[1 - (e^{-1/3})^5\right]}{1 - e^{-1/3}} \approx 14.35 \; ; \; S_{10} \approx 17.06 \; ; \; S_{\infty} = \frac{a_1}{1 - r} = \frac{7 e^{-1/3}}{1 - e^{-1/3}} \approx 17.69$$