Definition of a Sequence

A sequence is a function represented by $\left\{a_{n}\right\}$
where the domain is the variable n with positive integers.

The function values: $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are the terms of the sequence.

A finite sequence has a defined number of terms.

Ex: $2,6,10,14$ this sequence is finite with 4 terms.

An infinite sequence has an undefined number of terms.
Ex: $2,6,10,14, \ldots$ this sequence is infinite.

Often a pattern exists in a given sequence that will help to determine an expression called the $n^{\text {th }}$ term, also called the general term of the sequence. In the above example, the $n^{\text {th }}$ term is written as $a_{n}=4 n-2$.

Once you have a_{n};verify as follows:
first term: $a_{1}=4(1)-2=2$; second term: $a_{2}=4(2)-2=6$
third term: $a_{3}=4(3)-2=10$; fourth term: $a_{4}=4(4)-2=14$

Example 1: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms and show the result graphically:
$a_{n}=\frac{n-2}{n^{2}} \longrightarrow a_{1}=-1, a_{2}=0, a_{3}=\frac{1}{9}, a_{4}=\frac{1}{8}, a_{5}=\frac{3}{25}$
the first 5 terms are: $\left\{-1,0, \frac{1}{9}, \frac{1}{8}, \frac{3}{25}, \ldots\right\}$
in decimals: $\quad\{-1,0,0.1111,0.125,0.12\}$

The points $\left(n, a_{n}\right)$ shown on the graph are the coordinates of these 5 terms:

$$
(1,-1) ;(2,0) ;(3,0.1111) ;(4,0.125) ;(5,0.12)
$$

| $a_{n} \uparrow$ | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | | | |

Example 2: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms and show the result graphically:
$a_{n}=\frac{n^{2}+1}{2 n} \longrightarrow a_{1}=1, a_{2}=\frac{5}{4}, a_{3}=\frac{10}{6}, a_{4}=\frac{17}{8}, a_{5}=\frac{26}{10}$
the first 5 terms are: $\left\{1, \frac{5}{4}, \frac{5}{3}, \frac{17}{8}, \frac{13}{5}, \ldots\right\}$
in decimals: $\{1,1.25,1.6667,2.125,2.6\}$

The points $\left(n, a_{n}\right)$ shown on the graph are the coordinates of these 5 terms:
$(1,1) ;(2,1.25) ;(3,1.6667) ;(4,2.125) ;(5,2.6)$

Example 3: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms and show the result graphically:
$a_{n}=\frac{5-n}{n+1} \longrightarrow a_{1}=2, a_{2}=1, a_{3}=\frac{2}{4}, a_{4}=\frac{1}{5}, a_{5}=0$
the first 5 terms are: $\left\{2,1, \frac{1}{2}, \frac{1}{5}, 0, \ldots\right\}$
in decimals: $\{2,1,0.5,0.2,0\}$

The points $\left(n, a_{n}\right)$ shown on the graph are the coordinates of these 5 terms:
$(1,2) ;(2,1) ;(3,0.5) ;(4,0.2) ;(5,0)$

Example 4: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms and show the result graphically:
$a_{n}=(-1)^{n} \cdot n!\longrightarrow n!$ reads n factorial [abbreviation of 1.2.3.4... $(n-1) . n$]
$a_{1}=(-1) \cdot 1!=-1, a_{2}=(1) \cdot 2!=2, a_{3}=(-1) \cdot 3!=-6, a_{4}=(1) \cdot 4!=24, a_{5}=(-1) \cdot 5!=-120$
the first 5 terms are:
$\{-1,2,-6,24,-120, \ldots\}$

The points $\left(n, a_{n}\right)$ shown on the graph are the coordinates of these 5 terms:
$(1,-1) ;(2,2) ;(3,-6) ;(4,24) ;(5,-120)$

Example 5: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms.

Let $f(x)=e^{x / 4}$ and $a_{n}=f^{(n-1)}(0) \quad\left[f^{(5)}(0)\right.$ means the fifth derivative of $f(x)$ at $\left.x=0\right]$
$f^{(0)}(x)=f(x) \rightarrow a_{1}=f(0)=e^{0}=1$
$f^{(1)}(x)=f^{\prime}(x) \rightarrow a_{2}=f^{\prime}(0)=\frac{1}{4} e^{0}=\frac{1}{4}$
$f^{(2)}(x)=f^{\prime \prime}(x) \rightarrow a_{3}=f^{\prime \prime}(0)=\frac{1}{16} e^{0}=\frac{1}{16}$
$f^{(3)}(x) \rightarrow a_{4}=f^{(3)}(0)=\frac{1}{64} e^{0}=\frac{1}{64}$
$f^{(4)}(x) \rightarrow a_{5}=f^{(4)}(0)=\frac{1}{256} e^{0}=\frac{1}{256}$
the first 5 terms are: $\left\{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \ldots\right\}$

Example 6: Given the $n^{\text {th }}$ term of a sequence, write the first 5 terms.

Let $f(x)=\sin (3 x)$ and $a_{n}=f^{(n-1)}(0) \quad\left[f^{(7)}(0)\right.$ means the seventh derivative of $f(x)$ at $\left.x=0\right]$
$f^{(0)}(x)=f(x) \rightarrow a_{1}=f(0)=\sin (0)=0$
$f^{(1)}(x)=f^{\prime}(x) \rightarrow a_{2}=f^{\prime}(0)=3 \cos (0)=3$
$f^{(2)}(x)=f^{\prime \prime}(x) \rightarrow a_{3}=f^{\prime \prime}(0)=-9 \sin (0)=0$
$f^{(3)}(x) \rightarrow a_{4}=f^{(3)}(0)=-27 \cos (0)=-27$
$f^{(4)}(x) \rightarrow a_{5}=f^{(4)}(0)=81 \sin (0)=0$
the first 5 terms are: $\{0,3,0,-27,0, \ldots\}$
$\underline{\text { General Term of a Sequence }}$

Given the terms of 5 sequences, find the general term of each sequence:

Look for a pattern of the terms in each sequence, then verify the answers.
(1) $\frac{1}{3}, \frac{3}{6}, \frac{5}{9}, \frac{7}{12}, \frac{9}{15}, \ldots$
$a_{n}=\frac{2 n-1}{3 n}$
(2) $\frac{5}{1}, \frac{7}{4}, \frac{9}{9}, \frac{11}{16}, \frac{13}{25}, \ldots$
$a_{n}=\frac{2 n+3}{n^{2}}$
(3) $\frac{2}{1}, \frac{3}{3}, \frac{4}{5}, \frac{5}{7}, \frac{6}{9}, \ldots$
$a_{n}=\frac{n+1}{2 n-1}$
(4) $-1, \frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots$
$a_{n}=\frac{\cos (\pi n)}{n}$
(5) $\frac{e}{2}, \frac{e^{2}}{3}, \frac{e^{3}}{4}, \frac{e^{4}}{5}, \frac{e^{5}}{6}, \ldots$
$a_{n}=\frac{e^{n}}{n+1}$

Some general term may have more than one answer.
$\underline{\text { Application of Sequence (1) }}$
$\$ 5000$ is invested at 3% compounded monthly.
Use the $n^{\text {th }}$ term $a_{n}=P\left[1+\frac{i}{m}\right]^{n}$ where P is the amount invested, i is the interest in decimal, m number of compound intervals per year t time in years $n=m . t$ total number of compound intervals. Find a sequence of the monthly balances for a period of one year.
replacing P with $5000, i$ with 0.03 , m with 12 ; we get: $a_{n}=5000\left(1+\frac{0.03}{12}\right)^{n}=5000(1.0025)^{n}$ we write the first 12 terms:
$a_{1}=5000(1.0025)^{1}=5012.50 ; a_{2}=5000(1.0025)^{2}=5025.03 ; a_{3}=5000(1.0025)^{3}=5037.59$
$a_{4}=5000(1.0025)^{4}=5050.19 ; a_{5}=5000(1.0025)^{5}=5062.81 ; \quad a_{6}=5000(1.0025)^{6}=5075.47$
$a_{7}=5000(1.0025)^{7}=5088.16 ; a_{8}=5000(1.0025)^{8}=5100.88 ; a_{9}=5000(1.0025)^{9}=5113.63$
$a_{10}=5000(1.0025)^{10}=5126.42 ; a_{11}=5000(1.0025)^{11}=5139.23 ; a_{12}=5000(1.0025)^{12}=5152.08$

Definition of an Arithmetic Sequence

An Arithmetic Sequence is a sequence such that the difference d between two consecutive terms is constant.
Therefore $a_{2}-a_{1}=d ; a_{7}-a_{6}=d$ and so on.
The $n^{\text {th }}$ term of an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$

Example 7: Given the arithmetic sequence: $6,4,2,0,-2, \ldots$
find d, a_{n}, a_{50} and which term equals -40 ?
difference: $\quad d=a_{2}-a_{1}=4-6=-2$ same as $a_{5}-a_{4}=-2-0=-2$ therefore $d=-2$
$a_{n}=a_{1}+(n-1) d=6+(n-1)(-2)=8-2 n$ therefore $a_{n}=8-2 n$
$a_{50}=8-2(50)=-92$ the fiftieth term equals to -92
$a_{n}=8-2 n=-40 \rightarrow 8+40=2 n \rightarrow n=24$
The twenty-fourth term equals to -40

Example 8: Given the arithmetic sequence: $11,15,19,23,27, \ldots$
find d, a_{n}, a_{75} and which term equals 91 ?
difference: $\quad d=a_{2}-a_{1}=15-11=4$ same as $a_{5}-a_{4}=27-23=4$ therefore $d=4$
$a_{n}=a_{1}+(n-1) d=11+(n-1)(4)=4 n+7$ therefore $a_{n}=4 n+7$
$a_{75}=4(75)+7=307$ the seventy-fifth term equals to 307
$a_{n}=4 n+7=91 \rightarrow 4 n=91-7 \rightarrow n=21$
The twenty-first term equals to 91

Example 9: Given the arithmetic sequence: $\frac{1}{3}, \frac{5}{6}, \frac{4}{3}, \frac{11}{6}, \frac{7}{3}, \ldots$
find d, a_{n}, a_{30} and which term equals $\frac{19}{3} ?$
difference: $\quad d=a_{2}-a_{1}=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}$ same as $a_{5}-a_{4}=\frac{7}{3}-\frac{11}{6}=\frac{1}{2}$ therefore $d=\frac{1}{2}$
$a_{n}=a_{1}+(n-1) d=\frac{1}{3}+(n-1)\left(\frac{1}{2}\right)=\frac{1}{2} n-\frac{1}{6}$ therefore $a_{n}=\frac{3 n-1}{6}$
$a_{30}=\frac{3(30)-1}{6}=\frac{89}{6}$ the thirtieth term equals to $\frac{89}{6}$
$a_{n}=\frac{3 n-1}{6}=\frac{19}{3} \rightarrow 3 n-1=38 \rightarrow n=13$
The thirteenth term equals to $\frac{19}{3}$

Example 10: Given the arithmetic sequence: $\frac{2}{5}, \frac{1}{5}, 0,-\frac{1}{5},-\frac{2}{5}, \ldots$
find d, a_{n}, a_{43} and which term equals -9 ?
difference: $\quad d=a_{2}-a_{1}=\frac{1}{5}-\frac{2}{5}=-\frac{1}{5}$ same as $a_{5}-a_{4}=-\frac{2}{5}-\left(-\frac{1}{5}\right)=-\frac{1}{5}$ therefore $d=-\frac{1}{5}$
$a_{n}=a_{1}+(n-1) d=\frac{2}{5}+(n-1)\left(-\frac{1}{5}\right)=-\frac{1}{5} n+\frac{3}{5}$ therefore $a_{n}=\frac{3-n}{5}$
$a_{43}=\frac{3-43}{5}=-8$ the forty-third term equals to -8
$a_{n}=\frac{3-n}{5}=-9 \rightarrow 3-n=-45 \rightarrow n=48$
The forty-eighth term equals to -9

Example 11: Given the arithmetic sequence: $5,20,35,50,65, \ldots$
find d, a_{n}, a_{55} and which term equals 230 ?
difference: $\quad d=a_{2}-a_{1}=20-5=15$ same as $a_{5}-a_{4}=65-50=15$ therefore $d=15$
$a_{n}=a_{1}+(n-1) d=5+(n-1)(15)=15 n-10$ therefore $a_{n}=15 n-10$
$a_{55}=15(55)-10=815$ the fifty-fifth term equals to 815
$a_{n}=15 n-10=230 \rightarrow 15 n=240 \rightarrow n=16$
The sixteenth term equals to 230

Definition of a Geometric Sequence

A Geometric Sequence is a sequence such that the ratio r among two consecutive terms is constant.
Therefore $\frac{a_{2}}{a_{1}}=r ; \frac{a_{9}}{a_{8}}=r$ and so on.
The $n^{\text {th }}$ term of a geometric sequence is $a_{n}=a_{1} \cdot(r)^{n-1}$

Example 12: Given the geometric sequence: $120,60,30,15, \frac{15}{2}, \ldots$
find r, a_{n}, a_{10} and which term equals $\frac{15}{32}$?
ratio: $\quad r=\frac{a_{2}}{a_{1}}=\frac{60}{120}=\frac{1}{2}$ same as $\frac{a_{5}}{a_{4}}=\frac{\frac{15}{2}}{15}=\frac{1}{2}$ therefore $r=\frac{1}{2}$
$a_{n}=a_{1} \cdot(r)^{n-1}=120 \cdot\left(\frac{1}{2}\right)^{n-1}$ therefore $a_{n}=120\left(\frac{1}{2}\right)^{n-1}$
$a_{10}=120\left(\frac{1}{2}\right)^{10-1}=\frac{15}{64}$ the tenth term equals to $\frac{15}{64}$
$a_{n}=120\left(\frac{1}{2}\right)^{n-1}=\frac{15}{32} \rightarrow\left(\frac{1}{2}\right)^{n-1}=\frac{1}{256}=\left(\frac{1}{2}\right)^{9-1} \rightarrow n=9$
The ninth term equals to $\frac{15}{32}$

Example 13: Given the geometric sequence: $50,150,450,1350,4050, \ldots$ find r, a_{n}, a_{9}.
ratio: $\quad r=\frac{a_{2}}{a_{1}}=\frac{150}{50}=3$ same as $\frac{a_{5}}{a_{4}}=\frac{4050}{1350}=3$ therefore $r=3$
$a_{n}=a_{1} \cdot(r)^{n-1}=50 \cdot(3)^{n-1}$ therefore $a_{n}=50(3)^{n-1}$
$a_{9}=50(3)^{9-1}=328050$ the ninth term equals to 328050

Example 14: Given the geometric sequence: $-8,4,-2,1,-\frac{1}{2}, \ldots$ find r, a_{n}, a_{11}.
ratio: $\quad r=\frac{a_{2}}{a_{1}}=\frac{4}{-8}=-\frac{1}{2}$ same as $\frac{a_{5}}{a_{4}}=\frac{-\frac{1}{2}}{1}=-\frac{1}{2}$ therefore $r=-\frac{1}{2}$
$a_{n}=a_{1} \cdot(r)^{n-1}=-8 \cdot\left(-\frac{1}{2}\right)^{n-1}$ therefore $a_{n}=-8\left(-\frac{1}{2}\right)^{n-1}$
$a_{11}=-8\left(-\frac{1}{2}\right)^{11-1}=-\frac{1}{128}$ the eleventh term equals to $-\frac{1}{128}$

Example 15: Given the geometric sequence: $17,-34,68,-136,272, \ldots$ find r, a_{n}, a_{8}.
ratio: $\quad r=\frac{a_{2}}{a_{1}}=\frac{-34}{17}=-2$ same as $\frac{a_{5}}{a_{4}}=\frac{272}{-136}=-2$ therefore $r=-2$
$a_{n}=a_{1} \cdot(r)^{n-1}=17 \cdot(-2)^{n-1}$ therefore $a_{n}=17(-2)^{n-1}$
$a_{8}=17(-2)^{8-1}=-2176$ the eighth term equals to -2176

Example 16: Given the geometric sequence: $22,66,198,594,1782, \ldots$
find r, a_{n}, a_{12} and which term equals 48114?
ratio: $\quad r=\frac{a_{2}}{a_{1}}=\frac{66}{22}=3$ same as $\frac{a_{5}}{a_{4}}=\frac{1782}{594}=3$ therefore $r=3$
$a_{n}=a_{1} \cdot(r)^{n-1}=22 \cdot(3)^{n-1}$ therefore $a_{n}=22(3)^{n-1}$
$a_{12}=22(3)^{12-1}=3897234$ the twelfth term equals to 3897234
$a_{n}=22(3)^{n-1}=48114 \rightarrow(3)^{n-1}=2187=(3)^{8-1} \rightarrow n=8$

The eighth term equals to 48114

Identify Types of Sequence

Given 5 sequences, identify which sequence is arithmetic, geometric or neither:

Look for a pattern of the terms in each sequence, then verify the answers.
(1) $18,16,14,12,10, \ldots \quad$ arithmetic with $d=-2$
(2) $18,9, \frac{9}{2}, \frac{9}{4}, \frac{9}{8}, \ldots$
geometric with $r=\frac{1}{2}$
(3) $18,-18,18,-18,18, \ldots$
geometric with $r=-1$
(4) $18,10,22,6,30, \ldots$
neither
(5) $18,20,22,24,26, \ldots$
arithmetic with $d=2$

Application of Sequence (2)

An employee has an initial salary of $\$ 28000$. The salary increases 3% per year.
Use the $n^{\text {th }}$ term $a_{n}=P[1+i]^{n}$ where P is the initial salary, i is the rate of increase in decimal, n is yearly term.

Find a sequence of the first 3 years salaries.
replacing P with $28000, i$ with 0.03 ; we get: $a_{n}=28000(1.03)^{n}$
write the first 3 terms:
$a_{1}=28000(1.03)^{1}=28840.00 \quad ; \quad a_{2}=28000(1.03)^{2}=29705.20 \quad ; \quad a_{3}=28000(1.03)^{3}=30596.36$

$\underline{\text { Limit of a Sequence }}$

Given a sequence with the $n^{\text {th }}$ term, find if the sequence converges or diverges.
To do it, need to evaluate $\lim _{n \rightarrow \infty} a_{n}$
it is convergent if the result is a real number;
it is divergent if the result is undefined.

The limit of a sequence can also be verified graphically (not always reliable).
Note: If the result of the limit is indeterminate, may use L'Hôpital's Rule to remove the indeterminate form.

Examples of Limit of a Sequence

In Example 1: $\lim _{n \rightarrow \infty} \frac{n-2}{n^{2}}=\frac{\infty}{\infty} \longrightarrow$ use L'Hôpital's Rule: $\lim _{n \rightarrow \infty} \frac{1}{2 n}=\frac{1}{\infty}=0$
OR
$\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{2}}-\frac{2}{n^{2}}}{\frac{n^{2}}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}-\frac{2}{n^{2}}}{1}=\frac{0-0}{1}=0$
the sequence converges; verify the graph shown in Example 1.

In Example 2: $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n}=\frac{\infty}{\infty} \longrightarrow$ use L'Hôpital's Rule: $\lim _{n \rightarrow \infty} \frac{2 n}{2}=\lim _{n \rightarrow \infty} n=\infty$
OR
$\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{1}{n^{2}}}{2 \frac{n}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n^{2}}}{2 \frac{1}{n}}=\frac{1-0}{0}=$ undefined
the sequence diverges; verify the graph shown in Example 2.
In Example 3: $\lim _{n \rightarrow \infty} \frac{5-n}{n+1}=\frac{-\infty}{\infty} \longrightarrow$ use L'Hôpital's Rule: $\lim _{n \rightarrow \infty} \frac{-1}{1}=-1$
OR
$\lim _{n \rightarrow \infty} \frac{\frac{5}{n}-\frac{n}{n}}{\frac{n}{n}+\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\frac{5}{n}-1}{1+\frac{1}{n}}=\frac{0-1}{1+0}=-1$
the sequence converges; when you verify the graph shown in Example 3 (it is not reliable).

In Example 4: $\lim _{n \rightarrow \infty}(-1)^{n} \cdot n!= \pm 1 \lim _{n \rightarrow \infty}[n(n-1)(n-2)(n-3) \ldots 3.2 .1]= \pm \infty$; the sequence diverges.
In Example 5: the sequence: $\left\{1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \frac{1}{256}, \ldots\right\}$ the general term $a_{n}=\frac{1}{4^{n-1}}$
geometric sequence with $r=\frac{1}{4} ;-1<r<1 ; \lim _{n \rightarrow \infty} \frac{1}{4^{n-1}}=0$; the sequence converges.

In Example 6: the sequence: $\{0,3,0,-27,0, \ldots\}$
the terms show oscillating since the negative sign alternates and the absolute value increases. The sequence diverges.

Definition of a Series

A series is the sum of all terms of a sequence $\left\{a_{n}\right\}$
Example: Given a finite sequence: $4,7,11,16,22,31$ find the series.
The series is $4+7+11+16+22+31$ the sum of the six terms of the sequence.
The sum S of the series is 91 .
Notation: A finite series is written as $\sum_{k=1}^{N} a_{k}$ in the above example, it is written as $\sum_{k=1}^{6} a_{k}$
It is called the sigma notation.
An infinite series is written as $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$

Sequence of a Partial Sums of an Infinite Series

Given an infinite series $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$
the partial sums of the series is defined by:
$S_{1}=a_{1} ; S_{2}=a_{1}+a_{2}=S_{1}+a_{2} ; S_{3}=a_{1}+a_{2}+a_{3}=S_{2}+a_{3}$
$S_{4}=a_{1}+a_{2}+a_{3}+a_{4}=S_{3}+a_{4} ; S_{5}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=S_{4}+a_{5}$ and so on.
An infinite sequence $\left\{S_{n}\right\}$ of partial sums of the series is written as $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, \ldots, S_{n}$ where $S_{n}=\sum_{k=1}^{n} a_{k}$ is the general term of the sequence.

Convergence \& Divergence of an Infinite Series

Given an infinite series $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots$ and the sequence of the partial sums $\left\{S_{n}\right\}$, then the infinite series converges to a real number if $\lim _{n \rightarrow \infty} S_{n}=\sum_{n=1}^{\infty} a_{n}=$ a real number (sum of the series). If $\lim _{n \rightarrow \infty} S_{n}=$ does not exist, then the series diverges.

Note: This method does not always work since it is hard to find the general term S_{n}.
The way to proceed is to find a pattern in the partial sums and make an estimate of the sum of the series; the series is convergent.

If the estimate can't be done, then no sum exists for the series; the series is divergent.

Example 17: Given an infinite series $\sum_{n=1}^{\infty} 4^{n}=4+16+64+256+1024+\ldots$
Determine if the series is convergent or divergent.
The sequence of partial sums $\left\{S_{n}\right\}$ are:
$S_{1}=4, S_{2}=20, S_{3}=84, S_{4}=340, S_{5}=1364$
the pattern in the partial sums clearly shows that the values increase, then no sum exists for the series; conclusion: the series is divergent.

Example 18: Given an infinite series $\sum_{n=1}^{\infty} \frac{5}{2^{n}}=\frac{5}{2^{1}}+\frac{5}{2^{2}}+\frac{5}{2^{3}}+\frac{5}{2^{4}}+\frac{5}{2^{5}}+\ldots$
Determine if the series is convergent or divergent.
The sequence of partial sums $\left\{S_{n}\right\}$ are:
$S_{1}=\frac{5}{2^{1}}=2.5 ; S_{2}=\frac{5}{2^{1}}+\frac{5}{2^{2}}=\frac{15}{4}=3.75 ; S_{3}=\frac{5}{2^{1}}+\frac{5}{2^{2}}+\frac{5}{2^{3}}=\frac{35}{8}=4.375$
$S_{4}=\frac{5}{2^{1}}+\frac{5}{2^{2}}+\frac{5}{2^{3}}+\frac{5}{2^{4}}=\frac{75}{16}=4.6875 \quad ; \quad S_{5}=\frac{5}{2^{1}}+\frac{5}{2^{2}}+\frac{5}{2^{3}}+\frac{5}{2^{4}}+\frac{5}{2^{5}}=\frac{155}{32}=4.84375$
the pattern in the partial sums clearly shows that the values tend toward the number 5 , then the sum exists for the series; conclusion: the series is convergent.

Properties of Infinite Properties

Given two convergent series $\sum_{n=1}^{\infty} a_{n}=N_{a}$ and $\sum_{n=1}^{\infty} b_{n}=N_{b}$ with c a real number,
then the following properties are valid:
$\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}=c N_{a}$
$\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}=N_{a}+N_{b}$
$n^{\text {th }}$ term test for Divergence

If an infinite series $\sum_{n=1}^{\infty} a_{n}$ has $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then the series is divergent.
Note: This test does not imply that if $\lim _{n \rightarrow \infty} a_{n}=0$, the series is necessarily convergent.
Another test must be used to confirm convergence or divergence.

Example 19: Given an infinite series $\sum_{n=1}^{\infty} \frac{3-n}{2 n+5}$; test the series for divergence.
Use the $n^{\text {th }}$ term test for Divergence: $\lim _{n \rightarrow \infty} \frac{3-n}{2 n+5}=\frac{-\infty}{\infty}$
$\underline{\text { Note: }}$ Sometimes use L'Hôpital's Rule to evaluate indeterminate forms only like $\frac{0}{0}$ or $\frac{\infty}{\infty}$
using L'Hôpital's Rule: $\lim _{n \rightarrow \infty} \frac{3-n}{2 n+5}=\lim _{n \rightarrow \infty} \frac{-1}{2}=-\frac{1}{2} \neq 0$; conclusion: the series is divergent.

Example 20: Given an infinite series $\sum_{n=1}^{\infty} \frac{6}{5^{n}}$; test the series for divergence.
Use the $n^{\text {th }}$ term test for Divergence: $\lim _{n \rightarrow \infty} \frac{6}{5^{n}}=0$; conclusion: the test fails.
Note: Another test must be made to confirm the convergence or divergence of the series. (shown later)

Definition of an Arithmetic Series

An infinite arithmetic series is written as:
$\sum_{n=1}^{\infty}\left[a_{1}+(n-1) d\right]=a_{1}+\left(a_{1}+1 d\right)+\left(a_{1}+2 d\right)+\left(a_{1}+3 d\right)+\cdots+\left(a_{1}+n d\right)+\ldots$
where $a_{n}=a_{1}+(n-1) d$ with difference d as defined for arithmetic sequence.
The sum of n terms of an arithmetic series: $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
An infinite arithmetic series $\sum_{n=1}^{\infty}\left[a_{1}+(n-1) d\right] \quad$ always diverges
Example 21: Given an arithmetic general term $a n=3 n-7$; find the sum of the first 40 terms.
use $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$; need $a_{1}=3(1)-7=-4$ and $a_{40}=3(40)-7=113$
the sum of the first 40 terms: $S_{40}=\frac{40}{2}(-7+113)=2180$

Definition of a Geometric Series

An infinite geometric series is written as: $\sum_{n=0}^{\infty} a \cdot r^{n}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}+\ldots$
where $a_{n}=a_{1} \cdot r^{n-1}$ with ratio r as defined for geometric sequence.
Note: summation notation starts at $n=0$
The $N^{\text {th }}$ partial sum of the geometric series is $S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}$ with $r \neq 1$
An infinite geometric series $\sum_{n=0}^{\infty} a \cdot r^{n}$ diverges if $|r| \geq 1$ meaning $r \leq-1$ or $r \geq 1$
An infinite geometric series $\sum_{n=0}^{\infty} a \cdot r^{n}$ converges if $|r|<1$ meaning $-1<r<1$ and
the sum of $\sum_{n=0}^{\infty} a \cdot r^{n}=S_{\infty}=\frac{a}{1-r}$

Example 22: Find the fourth and seventh partial sum of the geometric series $\sum_{n=0}^{\infty} \frac{7}{2^{n}}$
Use first term $(n=0) a=7, r=\frac{1}{2}$ in the formula: $S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}$
Fourth partial sum: $S_{4}=\frac{7\left(1-\left(\frac{1}{2}\right)^{5}\right)}{1-\frac{1}{2}}=\frac{217}{16} \approx 13.6$
Seventh partial sum: $S_{7}=\frac{7\left(1-\left(\frac{1}{2}\right)^{8}\right)}{1-\frac{1}{2}}=\frac{1785}{128} \approx 13.9453$

Example 23: In Example 20, the infinite series $\sum_{n=1}^{\infty} \frac{6}{5^{n}}$; failed the $n^{\text {th }}$ term test for Divergence Notice that the series is geometric with $\sum_{n=0}^{\infty} \frac{6}{5^{n+1}}$ first term $a=\frac{6}{5}$ and ratio $r=\frac{1}{5}$ since $-1<r<1$; series is convergent and sum is $S_{\infty}=\frac{a}{1-r}=\frac{\frac{6}{5}}{1-\frac{1}{5}}=\frac{3}{2}$

Example 24: Verify if the geometric series $\sum_{n=0}^{\infty} 2(0.3)^{n}$ converges, if it does, find the sum.
Use first term $(n=0) a=2, r=0.3 \rightarrow|r|<1$ then series converges and
the formula for the sum is $S_{\infty}=\frac{a}{1-r}=\frac{2}{1-0.3}=\frac{20}{7} \approx 2.86$

Example 25: Verify if the geometric series $\sum_{n=0}^{\infty} 2\left(\frac{5}{3}\right)^{n}$ converges, if it does, find the sum.
Use first term $(n=0) a=2, r=\frac{5}{3} \rightarrow|r|>1$ then the geometric series diverges and no sum exists.

Example 26:

Given the repeated decimal $0 . \overline{8}$, express it as a geometric series.
Find the sum and write the decimal as the ratio of two integers.

Write $0 . \overline{8}=0.8+0.08+0.008+\cdots=\sum_{n=0}^{\infty} 0.8(0.1)^{n}$
Use first term $(n=0) a=0.8, r=0.1 \rightarrow|r|<1$ then series converges and
the formula for the sum is $S_{\infty}=\frac{a}{1-r}=\frac{0.8}{1-0.1}=\frac{8}{9}$

Example 27:

Given the repeated decimal $2 . \overline{01}$, express it as a geometric series.
Find the sum and write the decimal as the ratio of two integers.

Write $2 . \overline{01}=2+0.01+0.0001+0.000001+\cdots=2+\sum_{n=0}^{\infty} 0.01(0.01)^{n}=2+\sum_{n=0}^{\infty}(0.01)^{n+1}$
Use first term $(n=0) a=0.01, r=0.01 \rightarrow|r|<1$ then series converges and
the formula for the sum is $S_{\infty}=\frac{a}{1-r}$; therefore the sum is $2+\frac{0.01}{1-0.01}=2+\frac{1}{99}=\frac{199}{99}$

Example 28: Given a geometric general term $a_{n}=\frac{3}{2^{n}}$; find the sum of the first 10 terms.
use $\sum_{n=0}^{9} \frac{3}{2^{n}} \rightarrow$ need first term $(n=0) a=3, r=\frac{1}{2}$ in the formula: $S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}$
the sum of the first 10 terms: $S_{9}=\frac{3\left(1-\left(\frac{1}{2}\right)^{10}\right)}{1-\frac{1}{2}}=\frac{3069}{512} \approx 2.997$

Annuity

A deposit P in dollars is made m times a year for a number of years that pays $i \%$ compounded m times a year.
Find the balance in the account at the end of t number of years.

Use the formula $A_{n}=P\left(1+\frac{i}{m}\right)^{n}$
where P is the amount deposited in dollars.
t is the number of years.
i is annual interest rate in decimal form.
m is the number of times per year.
$n=m . t$ is the total number of times for the duration.
A_{n} is the general term of the sequence.

Example 29:
A deposit of $\$ 25$ is made monthly for 4 years that pays 3% compounded monthly.
Find the balance in the account at the end of 4 years.

Use $P=25, m=12, i=0.03, t=4, n=(12)(4)=48$ and we get the sum: $\sum_{k=1}^{n} P\left(1+\frac{i}{m}\right)^{k}$
$S_{48}=\sum_{k=1}^{48} 25\left(1+\frac{0.03}{12}\right)^{k}=\sum_{k=1}^{48} 25(1.0025)^{k}$

The $N^{\text {th }}$ partial sum formula starts at $n=0$ so do the following adjustments:
$S_{48}=\sum_{k=1}^{48} 25(1.0025)^{k}=-25+\sum_{k=0}^{48} 25(1.0025)^{k}$ with ratio $r=1.0025$
Use the $N^{\text {th }}$ partial sum formula of geometric series: $S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}$
$S_{48}=-25+\frac{25\left(1-(1.0025)^{49}\right)}{1-1.0025} \approx \$ 1276.46$

Applications of Sequences and Series: Annuities

1. A deposit of 40 dollars is made at the beginning of each week for 3 years into an account that pays 1.05% interest, compounded weekly a year.
Find the balance in the account at the end of the 3 years.
$-40+\sum_{n=0}^{156} 40\left(1+\frac{0.0105}{52}\right)^{n} \approx \$ 6339.95 ; r=1.0020193861$
2. A deposit of $\$ 300$ is made that earns 3% interest, compounded monthly.

Find a sequence that represents the monthly balances.
Write the general term and find the first 5 terms of the sequence.
$A_{n}=P\left(1+\frac{i}{12}\right)^{n} \Longrightarrow A_{1}=300\left(1+\frac{0.03}{12}\right)^{1}=300(1.0025)^{1}=300.75$
$A_{2}=301.50 ; A_{3}=302.26 ; A_{4}=303.01 ; A_{5}=303.77$
3. A deposit of $\$ 300$ is made that earns 3% interest, compounded bi-weekly.

Find a sequence that represents the bi-weekly balances.
Write the general term and find the first 5 terms of the sequence.
$A_{n}=P\left(1+\frac{i}{26}\right)^{n} \Longrightarrow A_{1}=300\left(1+\frac{0.03}{26}\right)^{1}=300(1.00115384)=300.35$
$A_{2}=300.69 ; ~ A_{3}=301.04 ; ~ A_{4}=301.39 ; ~ A_{5}=301.73$
4. To create a scholarship of $\$ 1000$ to be awarded every year, use the series $\sum 1000 e^{-0.08 n}$ to determine the sum of money required to deposit at a rate of 8% interest per year compounded continuously. Find the sum.
G.S.: $\quad a_{1}=1000 e^{-0.08} \approx 923.1163 ; r=e^{-0.08} \approx 0.9231163 \Longrightarrow \sum_{n=1}^{\infty} 1000 e^{-0.08 n} \approx \$ 12006.67$
5. A patient is given 7 units of a drug daily for a long period of time. A portion of the drug remains in the patient's body after n years is given by $\sum 7 e^{-n / 3}$. Find the total amount of drug remaining in the patient's body after 5 years, 10 years and many years later.
G.S.: $a_{1}=7 e^{-1 / 3} \approx 5.015719468 ; r=e^{-1 / 3} \approx 0.71653131$

$$
S_{5}=\frac{7 e^{-1 / 3}\left[1-\left(e^{-1 / 3}\right)^{5}\right]}{1-e^{-1 / 3}} \approx 14.35 ; S_{10} \approx 17.06 ; S_{\infty}=\frac{a_{1}}{1-r}=\frac{7 e^{-1 / 3}}{1-e^{-1 / 3}} \approx 17.69
$$

